Quote and Order Your PCB's Online, 24/7
PCB Design, Planning, and Components Selection in Printed Circuit Boards

PCB Design, Planning, and Components Selection in Printed Circuit Boards

Designing a printed circuit board or PCB can become challenging because there are many factors to consider, including environmental conditions the PCB will be exposed to and the desired electrical components that the PCB will use. The best design, planning, and component selection bring the best-printed circuit boards. All electronic products contain printed circuit boards so considering the above elements is essential that we will discuss these elements in this article.

Questions Regarding PCB Planning?

A few questions to keep in mind when designing and planning a PCB include:

  • How many layers do I want?
  • What thickness of copper foil/laminate do I want?
  • Do I want to use plated through holes or non-plated through holes?
  • Do I want my board to be double-sided, single-sided, or multilayer?
  • Are all of my components going to be surface mount or through-hole?
  • Are all of my connections going to be made using jumpers or solder pads?
  • Can I get away with using cheaper non-plated through holes instead of plated ones? Can I get away with not having a ground plane layer if all my signals are digital logic levels?
  • Does my design require low-noise analog filtering?
  • Will I need to isolate high-voltage circuitry from low-voltage circuitry, and high-speed circuitry from slow-speed circuitry?

You can start designing a PCB after getting answers to the above questions.

PCDesign: Basic Guidelines

Before you even begin to design your printed circuit board, make sure you understand some basics of PCB design. When designing a Printed Circuit Board several things should be considered. Keep in mind that most errors caused by circuit boards are usually associated with improper grounding and power distribution.
If you are trying to create a custom PCB or just update an existing board, it is important to consider whether it will be surface mounted or through-hole mounted.
Size: The size of your circuit board will also play a big role to see how much space you have for components. You can either choose to go with a larger board and have less room for components or vice versa.
Layers: The number of layers in your circuit board also plays an important role to see how many components you can fit into one area. There are three basic types of circuit boards, such as single-sided, double-sided, and multi-layer. Single-sided circuits only have traces on one side while double-sided circuits have traces on both sides of a sheet of material called laminate. Multi-layer circuits consist of multiple layers stacked together which increases current capacity.
It is important to know what type of circuit board you will need before starting any design work because it may require special tools or materials that aren’t available at home orin local electronics stores.

PCB Design, Planning, and Components Selection in Printed Circuit Boards
PCB Design, Planning, and Components Selection in Printed Circuit Boards

PCB Layout Techniques

While surface-mount technology dominates today’s electronics designs, you still may need to design or repair an older circuit that uses through-hole components. Whatever your reason is for dealing with through-hole components, there are several layout techniques you should be aware of to ensure reliable operation.
Many PCB layout problems stem from poor component placement rather than PCB material defects. By following these best practices when laying out a PC BOARD using through-hole components, you can help avoid these common mistakes If possible.

  • Place resistors before capacitors on each side of a power supply line. This way, if any capacitor fails, it will not causedamage to the resistors placed after it.
  • Place decoupling capacitors close to the chip they are used for decoupling. For example, if you have a microcontroller with two crystal oscillators, place one cap near each oscillator and connect them at opposite corners of their respective pads.
  • Placing both caps near only one oscillator would increase the parasitic inductance between those two connections, reducing efficiency.
  • Don’t place any other traces within 0.5mm of a signal trace running parallel to another signal trace on different layers. Signal traces running parallel are said to be coupled and can pick up noise from each other due to electromagnetic induction caused by nearby power or ground planes.
  • Try to keep traces spaced away from each other by 1mm or more if possible. If you must cross a signal trace over another signal trace, do so at right angles and use wide traces to reduce coupling.
  • When placing multiple closely-spaced power/ground pins on a single side of a DIP package, leave enough room between pins for solder mask relief cuts. Otherwise, you could end up with a solder mask bridging across adjacent pins when you remove your stencil during soldering operations.
  • Never put a hole in a signal trace and even small holes can cause shorts to the surrounding traces and components, especially if you don’t seal them off with liquid electrical tape or conformal coating. Similarly, don’t drill holes in the ground or power plane areas because those holes could become filled with solder during soldering operations.
  • Drill larger holes for mounting standoffs instead of smaller ones for mounting screws to save time and improve manufacturability.
  • Keep in mind that you may want to place components on a PCB around a standoff if you plan to solder wires or connectors directly to it. Always use solid core wire for power and ground traces. Stranded wire has too much resistance and tends to break easily under repeated flexing.
  • Keep track of your trace lengths to make sure none are longer than 2-3 times their widths. Longer traces can affect signal integrity and lead to intermittent failures in your final product.
  • When possible, use a ground plane layer to provide a return path for your power and ground traces. Power and ground planes also act as heat sinks, helping to dissipate heat from your components.
  • If you can’t use a separate ground plane layer for some reason, try to place as many of your signal traces on that layer as possible. That way, if one trace causes a problem with another trace or component, it won’t affect any other traces running on that layer.

Components Selection for Printed Circuit Boards

Deciding what components to choose when designing printed circuit boards is an important process that affects your final product. These electronic components come in many shapes and sizes, with different specifications for power consumption, weight, and other factors.

Knowing how to choose your components efficiently can prevent expensive mistakes down the line. This guide will help you understand how to select components for your PCB design effectively.

A printed circuit board contains conductive tracks made from metal foil and a conducting adhesive, typically etched into a thin layer of non-conductive material such as fiberglass or epoxy resin. Components are then placed on these tracks at specific points called pads, which are connected by copper traces forming circuits.
The PCB is usually used to connect electronic components like resistors, capacitors, transistors, and diodes with each other to form an electrical circuit. The most common materials used for PCBs are FR4 (fiberglass) and G10 (FR4 glass laminate). Other materials include CEM-1 (glass epoxy), Rogers 4003 (aluminum), Rogers 4350 (aluminum), and PTFE-based laminates.

The Purpose of Design

When designing printed circuit boards, many factors need to be considered and you can split them into two categories, such as functional requirements and design constraints.
The functional requirements describe what your printed circuit board needs to do, while design constraints determine how it will be designed. For example, if you want your product to have a battery life of more than five hours you need to consider things like battery size and power consumption when designing your product.
Functional Requirements
Four main functional requirements must be met when designing printed circuit boards, such as performance, reliability, serviceability, and cost.
Performance refers to how well your product performs its intended task.
Reliability means that your product should work correctly all of the time without fail.
Serviceability means that it should be easy to repair any problems with your product once they occur.
Cost refers to whether or not you can produce your final product for a reasonable price.
These requirements may change depending on who your target market is. If you are targeting high-end consumers, reliability and serviceability might take priority over cost. On the other hand, if you are targeting low-income customers in developing countries, affordability might take priority over everything else.

Connectors for Printed Circuit Boards

Solderless connectors are used to connect different electronic components on a printed circuit board. They’re available in two categories, such as through-hole and surface mount.
These connectors can also be classified by their location on a PCB, such as an edge-mounted or through-hole mounted. The primary difference between these two is the size.

Edge-mounted connectors are smaller than through-hole ones because they don’t have as much copper around them. This makes them better suited for smart devices having less space, such as cell phones and laptops. Whereas the through-hole mounted connectors are larger and easier to work with but require more space on a PCB.

Would like to know more about design, planning, and components selection in PCB or pcb assembly services? Write us at sales@pnconline.com

Written by Sam Sangani

Sam Sangani

Sam Sangani is the President & CEO of PNC Inc., a Nutley, NJ based Printed Circuit Board manufacturer. Sam graduated from L. D. Engineering College with a BS Degree in Mechanical Engineering. He also continued his education and graduated from Steven’s Institute of Technology where he acquired a Master’s degree in Computer Science.

After completion of his BS, Sam worked as a QC Manager, for Xerox, Romania and London. He was responsible for the Quality Control of Cable and Wire Harness imports from Romania. After completing his Master’s Degree, he worked as a Senior Programmer with IBM, Tucson, Arizona. Sam was responsible for leading the Mainframe System Programming Team.

In 1997, Sam acquired PNC INC., a Nutley, NJ based PC Board fabrication Shop. From 1997-2013, Sam has made tremendous improvements and changes within PNC INC., as he added many new Products and Technologies in PNC’s portfolio. With his proven track record and leadership, PNC has never had an unprofitable year and has continued its growth yearly since 1997.

His current responsibilities are Strategic Planning, Corporate Management, New Business Ventures, Sales & Marketing, Trade Shows, Professional Services and leading productive teams to achieve peak potential. He has also utilized Lean Management techniques which have built a foundation for PNC’s high-paced growth. Sam also enjoys real-estate investing, web design & SEO, trading stocks, options, futures and Forex markets.

Leave a Reply

Your email address will not be published.

Printed Circuit Boards

PNC Inc. offers every solution in the PCB arena. This includes design, fabrication, assembly and a number of value-added services. With these capabilities and our facilities around the country, we are able to provide quick-turn prototypes and large-scale production all under the same roof. We pride ourselves on constant improvement and invest millions each year into making sure we have the latest technology to make our processes as efficient as possible.

Contact Adress

  • Location:
    PNC Inc.
    115 East Centre St.
    Nutley, NJ 07110
  • Phone: (973) 284-1600
  • Email:

Share with us


© 2015 pnconline All right reserved