Tag Archives: pcb assembly contract manufacturer

PCB Assembly

The Impact of Miniaturization in Design and PCB Assembly

The miniaturization of technology is drastically changing the way we use electronics, and it’s affecting the design and assembly of printed circuit boards. The miniaturization of components helps engineers develop more powerful, sophisticated, and efficient products. You will see smaller, lighter, and easy-to-transport devices. Here, we will explore the impact of miniaturization on design and assembly and what this could mean for the future of electronic devices. Let’s discuss it further and also find out how it affects the end product, from manufacturing costs to product performance.

Higher Density

The miniaturization of printed circuit boards (PCBs) leads to a significant increase in density. As the size of electronic components decreases, PC Board designers can pack more functionality onto smaller boards, providing efficient use of space in devices. This higher density not only enables more functionality in a smaller space but also improves signal integrity and reduces power consumption.

However, with higher density comes a new set of challenges for PCB designers and manufacturers. You have to maintain tighter tolerances in the design process to ensure the proper functioning of the board. Moreover, the assembly must be precise to prevent shorts and other defects. This requires advanced equipment and techniques, including high-resolution imaging, precise soldering equipment, and inspection methods.

Despite the challenges, higher density has become essential in modern design and assembly, as electronic devices continue to get smaller and more powerful. The development of wearable technology, IoT devices, and more efficient computing is due to the developments in miniaturization, as they all rely on highly-dense PCBs.

Increased Reliability

Miniaturization makes printed circuit board design and assembly more reliable. This is because the smaller size and tighter component placement on the board minimize the risk of damage due to vibration, shock, or temperature fluctuations. The components and traces are closer together, making it easier for signals to travel between them. This also reduces the possibility of electrical noise and signal distortion, which can impact PCB performance.

Moreover, the advancement in surface mount technology enables assemblers to place components directly onto the PCB surface, rather than having to drill holes and attach the components to the board. This process is known as surface mount technology (SMT), and it has a few benefits. Firstly, it eliminates the need for holes, which can weaken the board and increase the risk of breakage. Secondly, it helps place smaller and lighter components, leading to a compact PCB. Lastly, SMT enables better quality control and accuracy during PCB assembly, as you can mount the components with precision machines.

The increased reliability of miniaturized PCBs is ideal for industries like aerospace, medical devices, and automotive, where reliability is highly important. Miniaturization helps develop smaller and more advanced electronics that can withstand harsh environments, vibrations, and other adverse conditions.

Greater Functionality

Miniaturization has opened up new avenues of greater functionality for Printed Circuit Boards With smaller, lighter, and more compact boards, designers and engineers can now cram more features, circuits, and components into a single PCB design. Hence, it helps to have highly functional products. For instance, a compact, Printed Circuit Board can now operate a variety of smart devices, wearables, and even miniature robots, enabling them to perform advanced functions with the least possible space requirements.

Miniaturization helps create more complex PCBs with multi-layered circuit designs, stacked components, and intricate traces. Hence such a board can handle more power, data, and complex signals.

The high functionality of compact PCBs also enables companies to meet the specific demands of different applications and end-users. With reduced space constraints and increased reliability, PCBs can now provide optimal solutions for various electronic systems. 

Smaller Size

One of the most obvious effects of miniaturization on printed circuit board design and assembly is the smaller size of the components. As technology continues to advance, electronic devices become increasingly compact, requiring the PCBs that power them to become smaller as well. Smaller size not only means that devices can be more portable, but it also enables more efficient use of space within a device.

However, the smaller size also brings some challenges for PCB designers and assemblers. It is hard to work with smaller components as it involves more precise placement and soldering techniques. The smaller the component, the more likely it is to be damaged during assembly, making quality control an essential part of the process.

Other than these challenges, the smaller size also brings many benefits to PCB design and assembly. It helps to have more user-friendly and portable devices. Besides, smaller components can also lead to a reduction in power consumption, since they require less energy to function.

Likewise, smaller PCBs are easier to manufacture since they require less material, and their production cost is also low. This ultimately leads to a more cost-effective product for consumers. Such PCBs also open up new opportunities for manufacturers to create innovative and low-cost products.

So, the effect of miniaturization on design and assembly is a mixed bag of benefits and challenges. However, the ability to create smaller and more powerful electronic devices is possible due to a compact PCB.

Lighter Weight

Miniaturization also reduces the weight of PCB components. It is ideal for applications where weight plays a crucial role, such as aerospace, automotive, and military industries. PCBs in these sectors must be lightweight to ensure efficient performance and lower costs.

With miniaturization, a PC Board manufacturer can replace large, and heavy components with smaller, and lightweight ones. So, it leads to the reduced weight of the entire board and the final product, resulting in improved fuel efficiency, increased payload capacity, and better handling of vehicles.

Moreover, the reduced weight of compact PCBs enables designers to create thinner and sleeker devices that are more portable and aesthetically appealing. Lighter PCBs are now common in portable devices such as smartphones, laptops, and tablets, making these gadgets easier to carry and use on the go.

The benefits of lightweight PCBs also extend to shipping and handling costs, which reduce as the overall weight of the products decreases. In turn, this helps manufacturers save on logistics costs and lower their prices to stay competitive.

In conclusion, miniaturization leads to lightweight and compact PCBs that are now crucial components in many industries. Their reduced weight and size help have improved performance, efficiency, portability, and cost savings. As technology continues to evolve, miniaturization will also continue to play an even bigger role in PCB design and assembly, resulting in more efficient and innovative products.

Reduced Cost

The miniaturization of electronic components has reduced the cost of printed circuit board design and assembly. Smaller and more densely packed components result in fewer materials for PCB manufacturing, ultimately lowering production costs.

Moreover, the surface mount technology helps have smaller components to be mounted directly onto the PCB which reduces the need for drilling and plating. This means that PCB designers and assemblers are spending less on the drilling process, which is traditionally the most expensive aspect of PCB production.

Besides, miniaturization helps manufacturers create more functional and smaller PCBs, needing less hardware to accomplish a task. This reduces the cost of not only PCB production but also the cost of the overall product as a whole.

Moreover, smaller PCBs result in lighter weight, which can further reduce transportation and handling costs. This means that end-users may benefit from a reduced overall cost for the product.

Overall, miniaturization has had a significant impact on design and assembly, not just in terms of increased functionality and reliability, but also in reducing costs. As technology continues to evolve, we can expect the miniaturization trend to continue, resulting in even smaller and more efficient PCBs in the future.

FAQs 

What Is The Benefit Of A Compact PCB?

PCB miniaturization helps develop smaller and more advanced electronics that can withstand harsh environments, vibrations, and other adverse conditions.

Which Industries Are Compatible with Smart and Lightweight PCBs?

Compact and lightweight PCB is ideal for applications where weight plays a crucial role, such as aerospace, automotive, and military industries

Which Technology Helps Assemble Compact Components On To PCBs?

The surface mount technology (SMT) is ideal for mounting smaller components onto the PCB surface.

Final Thoughts

Miniaturization has had a significant effect on modern technology and helps us make smaller, more powerful devices. From aerospace systems to medical devices, automotive to the Internet of Things (IoT) devices, miniaturized PCBs have revolutionized the electronics industry. The increased reliability of miniaturized PCBs is ideal for industries like aerospace, medical devices, and automotive, where reliability is highly important. 

Moreover, miniaturized PCBs have become a critical component in many consumer electronic products, providing better functionality and reducing the size of electronic devices. For instance, with smaller PCBs, mobile devices can now house more components, which ultimately translates into a better user experience, better performance, and increased portability.

Moreover, the advancement in surface mount technology enables assemblers to place components directly onto the PCB surface, rather than having to drill holes and attach the components to the board.

Would like to know more about the miniaturization impact on the printed circuit board? Email us at sales@pnconline.com

Printed Circuit Board

Printed Circuit Board Design for Aerospace and Defense Applications

Designing circuit boards for aerospace and defense applications is a complex and challenging task. Not only do engineers need to consider the specific application’s needs, but they must also follow the rigorous standards of these industries. Here, we will explore the unique demands of circuit design for aerospace and defense. Moreover, we will discuss how engineers can overcome these challenges to produce quality products that meet the highest safety and performance standards.

The Challenges of Designing Circuits for Aerospace and Defense

Designing circuits for aerospace and defense applications comes with its own unique set of challenges. These challenges include extreme environments, high reliability, and the need for low weight and size. Furthermore, aerospace and defense applications often have a long lifecycle and may require decades of service without any major repairs. This means that circuit designers must take extra care to ensure that their designs meet the rigorous demands of these applications.

One of the biggest challenges in PCB Design for aerospace and defense is dealing with extreme temperatures. These applications often require circuits to function in environments that can range from sub-zero temperatures to several hundred degrees Celsius. This means that circuit designers must use materials and components that can withstand these extreme temperatures, without affecting the overall performance of the circuit.

Another challenge in aerospace and defense circuit design is the need for high reliability. The failure of a circuit in these applications can have catastrophic consequences, including loss of life and mission failure. Therefore, circuit designers must ensure that their designs are extremely reliable and have built-in protection, so that they can continue to function even in the event of a failure.

Moreover, the weight and size of circuit components are also a major considerations in aerospace and defense applications. Space is often at a premium in these applications, and the weight of the circuitry can have a significant impact on overall system performance. Therefore, circuit designers must work to reduce the weight and size of their designs, while still maintaining high levels of reliability and performance.

So, designing circuits for aerospace and defense applications requires a unique set of skills and considerations. Extreme temperatures, high reliability, and low weight and size are all key factors that engineers should consider while designing circuits for these applications. Circuit designers who can meet these challenges will be capable of delivering high-performance, reliable solutions for these critical applications.

The Importance of Standards in Circuit Design

When designing circuits for aerospace and defense applications, adhering to industry standards is of utmost importance. These standards are essential to ensure the highest level of safety, reliability, and performance for electronic systems that operate in some of the most extreme conditions.

One of the most widely recognized standards in the industry is MIL-STD-810, which outlines the environmental engineering considerations and test methods for equipment and systems used in military applications.

Other standards such as MIL-STD-461 and DO-160 specify electromagnetic compatibility and environmental testing requirements for military and aerospace electronic equipment, respectively.

Make sure that mil-spec components have minimum tolerance of up to 1% to 2% for better function. The current bearing capacity of the board should come up with an extra cushion. Like, if your project needs a 2 amperes load, you should build its PCB keeping in mind 3 amperes.

Likewise, the AR or aspect ratio of the Printed Circuit Board is important as it should be either 1:10 or less to have better stability. A higher aspect ratio may damage a PCB, especially in tough environments, making the construction costly.

Make sure to keep the ground and power planes separate. Similarly, high-frequency components should be away from low-frequency components, or it would result in poor signals. Moreover, it is hard to test the aerospace and defense PCBs in normal environments, so you should consider the pre-layout simulations and impedance calculations.

These standards are not only important for ensuring the functionality of the circuit but also for meeting government regulations and certification requirements. Failing to meet these standards can result in delays, increased costs, and potential safety hazards.

When selecting a circuit designer for aerospace and defense applications, make sure they have experience regarding these standards and have full knowledge of the application. A designer who is familiar with these requirements can ensure that the final design will meet the necessary regulations and perform reliably in the field.

The Process of Creating a Custom Circuit Design

The process of designing a printed circuit board for aerospace and defense applications is complex and lengthy. It requires a high level of expertise and attention to detail to ensure that the board meets all of the necessary specifications and requirements.

The process begins with defining the circuit’s specific requirements. This includes determining the PCB components, their size and shape, and the necessary signal routing. After defining these requirements, the designer will begin the layout process.

During the layout process, the designer will place the components on the board, route the signal traces, and add any necessary layers or vias. It is critical that the layout is accurate and the circuit meets all of the requirements and performs well.

After the layout is complete, the board will undergo a series of tests to ensure that it is perfect in all ways. This includes testing for electrical performance, temperature range, and reliability. If there is any issue, the designer will have to redesign and retest the board.

You can build the board after thoroughly testing it. The manufacturer will follow the specifications provided by the designer and create a finished board that meets all of the necessary requirements.

Overall, the process of creating a custom circuit design for aerospace and defense applications is complex. It requires a high level of expertise and attention to detail. By working with an experienced circuit designer, organizations can ensure that their circuit designs meet the unique demands of these industries and perform reliably in even the most challenging environments.

Managing Radio Frequency

RF or radiofrequency is an important factor to consider while designing a PCB for military and aerospace. The RF components should be according to the required performance specs. The board should avoid EMI or electromagnetic interference to keep the nearby devices safe. Generally, the rigid PC Board is ideal for the aircraft cockpit, and instrumentation of the control tower.

Thermal Management

The designers should also consider thermal management while designing the circuit boards. It is hard to replace a faulty PCB when the satellite is in space as heat accumulation can damage the board. The best solution, in this case, is to use metal that can naturally dissipate heat, as cooling is not possible in the absence of air. Hence engineers use heavy copper of 4oz with 20 layers to dissipate heat. However, it makes it quite challenging to have good solder joints as heat goes away from the SMD points.

The Benefits of Working with an Experienced Circuit Designer

When it comes to designing circuits for aerospace and defense applications, experience is the key. Working with an experienced circuit designer can offer numerous benefits, including:

  1. Understanding of Unique Requirements: An experienced designer will have a deep understanding of the unique requirements and challenges of circuit design for aerospace and defense applications. This knowledge is critical in ensuring that the final product meets all necessary specifications and operates effectively in its intended environment.
  2. Attention to Detail: In aerospace and defense, precision and attention to detail are paramount. Experienced circuit designer has honed their skills over many years and knows how to design circuits that are both reliable and efficient. They should be able to spot potential issues before they become problematic, helping to minimize costly delays and rework.
  3. Access to Industry-Leading Tools: The designer should have access to the latest design tools and software, enabling them to create circuits optimized for performance, size, and cost. These tools can be expensive to obtain and use, making it difficult for those without experience to compete.
  4. Proven Track Record: the PCB designer should have a proven track record of success in designing circuits for aerospace and defense applications. This experience gives you the confidence that the final product will meet all necessary specifications and requirements.
  5. Collaborative Approach: Printed Circuit Board designer knows that collaboration is key to delivering a successful product. Experienced designers will work closely with your team to ensure to meet your project goals, and will keep you informed throughout the entire design process.

Final Thoughts

The aerospace and defense industries have unique demands when it comes to the design of printed circuit boards. Designers should have an understanding of the specific requirements of these industries to ensure that their PCBs meet the highest standards. The above information gives readers an insight into the challenges and considerations that come with design for the aerospace and defense sectors.

By adhering to industry standards, the design process for aerospace and defense circuits becomes more rigorous and meticulous. However, this level of attention to detail results in electronic systems that are more robust and reliable in even the harshest environments.

So, when it comes to circuit design for aerospace and defense applications, it’s essential to work with an experienced designer. They have the skills, tools, and knowledge necessary to create circuits that meet the unique requirements of these industries, ensuring that your product performs as expected. So, before starting your next circuit design project, consider partnering with an experienced designer to take your design to the next level.

Would like to know more about the Circuit design or PC Board assembly for Aerospace and Defense Applications? Email us at sales@pnconline.com

The Necessity and Benefits of ECAD-MCAD Collaboration for PCB Design

When it comes to creating high-quality printed circuit boards, ECAD and MCAD collaboration is essential. PCB designers use ECAD or electronic computer-aided design for the circuit design. Whereas MCAD or mechanical computer-aided design is used for the mechanical design. By combining these two disciplines, PCB design can ensure that their products meet both the electrical and mechanical requirements of the application.

Designers should also conduct thermal and structural analyses to evaluate temperature and stress levels that might affect the performance of the Printed Circuit Board. This information helps designers to determine the optimal placement and routing of the components. It also accounts for any potential constraints caused by physical environmental conditions.

What is ECAD (Electronic Computer-Aided Design)

ECAD stands for Electronic Computer-Aided Design, and it refers to the use of computer software to create electronic designs. You can use ECAD to design components such as integrated circuits, printed circuit boards, and semiconductor devices. With ECAD, engineers can model their circuit designs digitally before they move onto the physical prototyping stage.

ECAD also helps in the automation of various design processes, such as simulations, signal analysis, and device layout. Ultimately, ECAD tools help engineers optimize the design of their circuits to achieve higher performance, faster development cycles, and cost savings.

However, ECAD alone does not provide a complete design solution for PCBs; mechanical elements must be there for the board to function correctly and meet its intended purpose. That’s where MCAD comes in.

What Are The Benefits Of ECAD-MCAD Collaboration? 

ECAD-MCAD collaboration is necessary for successful design. The combination of both software help to improve product development, reduce costs, and increase efficiency. Using the collaboration between ECAD and MCAD to create a comprehensive product design helps to ensure that the finished product will meet all requirements, both mechanical and electrical.

The combination of ECAD and MCAD also helps to minimize development time. By understanding both the electronic and mechanical aspects of the design, engineers can make decisions about components and designs without spending time on redesigns. Moreover, it can help reduce costs by eliminating the need to produce multiple prototypes or use more expensive materials.

Moreover, ECAD-MCAD collaboration can also be beneficial when creating drawings for a PC Board layout. The 3D model created by MCAD provides a better understanding of the overall PCB design and allows engineers to optimize their layouts more effectively. This ensures that the finished product meets all requirements and reduces the development time.

How Does ECAD-MCAD Collaboration Improve Design?

One of the primary benefits of ECAD-MCAD collaboration is that it allows designers to quickly check for any potential interferences between components that could cause problems in the final product. This makes the design process much more efficient since you can detect the problems before they become costly issues down the line.

ECAD-MCAD collaboration also allows designers to accurately predict the performance of the PCB by simulating its behavior in a virtual environment. By running simulations, designers can determine how their design will react to different environmental conditions, such as temperature, humidity, and electrical noise. This helps to ensure that the design will function properly in its intended application.

In addition to providing performance insights, such collaboration can also improve the manufacturability of printed circuit boards. By incorporating mechanical parts into the design, designers can ensure that all components fit together correctly, reducing the need for manual adjustments during production. This not only saves time and money, but it also helps to ensure a higher quality end product.

Such collaboration is essential for producing successful PCB designs. By combining the two design processes, manufacturers can easily create efficient and effective products with minimal risk of failure. With the help of simulation and analysis tools, designers can also accurately predict the performance and manufacturability of their PCBs before committing to full production.

Thermal and Structural CAD-CAE Integration

By combining the ECAD and MCAD, engineers can gain an understanding of how electrical components interact with the physical environment. This is easy to accomplish through CAD-CAE integration, where complex system simulations and analysis are possible by using both ECAD and MCAD data. You can conduct thermal and structural analysis to evaluate temperature and stress levels that might affect the performance of the PCB. This information helps designers to determine the optimal placement and routing of the components. It also helps to explain any potential constraints caused by physical and environmental conditions.

Overall, the ECAD-MCAD collaboration offers improved accuracy, reliability, and efficiency when it comes to designing a PCB. By combining the capabilities of both ECAD and MCAD systems, engineers can create sophisticated designs that will meet both the mechanical and electrical requirements of their applications. Through CAD-CAE integration, designers can also perform tests on the PCB to evaluate its performance in the actual environment. Ultimately, ECAD-MCAD collaboration is essential for successful PCB design.

Collaboration between Altium Designer and Solidworks

If you are looking for an easier and more efficient way to design PCBs, consider combining Altium Designer and SolidWorks. These two powerful tools can help streamline your design process, helping you to create intricate PCBs with greater speed and accuracy. We will discuss how to effectively use Altium Designer and SolidWorks together to optimize your PCB design process.

The Benefits of Using Altium Designer with Solidworks

Using Altium Designer and SolidWorks in tandem can help streamline the PCB design process. Altium Designer is an industry-leading PCB design platform, offers a range of powerful features for the design, simulation, and output of schematic drawings, layouts, and more. SolidWorks is a powerful 3D CAD modeling program that provides tools for creating realistic 3D models of your boards.

By using Altium Designer and SolidWorks together, designers can reduce time spent on the manual entry of data, ensure a greater level of accuracy throughout the design process, and maximize design efficiency. With Altium Designer, you can easily create schematics and layouts based on existing 3D models created in SolidWorks. The software also allows designers to add components directly to the board layout, making it easier to quickly build out complex boards.

Altium Designer also offers advanced simulation capabilities, allowing you to simulate your boards in both static and dynamic scenarios. This makes it easier to troubleshoot potential problems before committing to the physical design. Additionally, the software provides a comprehensive set of tools for generating manufacturing files from the design, making it easy to bring the board into production.

Overall, by combining Altium Designer with SolidWorks, designers can benefit from a faster, more accurate design process with fewer opportunities for errors. This streamlined process can save time and resources during the design process, helping companies get their products to market faster.

How To Set Up The Collaboration Between The Two Software Programs

Setting up a collaboration between Altium Designer and SolidWorks is easy, and it can provide significant benefits to your design process. You should have both programs installed on your computer. Then follow the below steps which will help you set up the collaboration between Altium Designer and SolidWorks:

  • Launch both programs and open the documents that you want to collaborate on.
  • In SolidWorks, go to Tools > Add-Ins > Altium Designer Interface.
  • Click “Connect” to begin the connection process.
  • Select which components of the SolidWorks document you want to export to Altium Designer.
  • In Altium Designer, go to File > Import > 3D Models from SolidWorks.
  • Select the model that you want to import and click “Open”.
  • The model will be imported into Altium Designer and you can begin designing your PCB layout with the imported model.

Using these steps, you can easily set up a collaboration between Altium Designer and SolidWorks, allowing you to streamline your design process and take advantage of the features offered by both programs.

So, such collaboration offers numerous benefits to PCB designers. It helps to create comprehensive product designs that are functional and aesthetically pleasing, while also reducing development time and cost. By utilizing the collaboration between ECAD and MCAD, designers can create better PCB layouts that meet all requirements and optimize the product design process.

Final Thoughts

When it comes to designing printed circuit boards, the collaboration between electrical computer-aided design (ECAD) and mechanical computer-aided design (MCAD) is essential for success. By integrating ECAD and MCAD, engineers can ensure the PCB design is accurate, efficient, and cost-effective.

ECAD provides the electronic schematic diagrams and component placements, while MCAD takes care of the mechanical parts of the design, such as housing dimensions and materials. By combining these two disciplines, the designer can create a complete product that is both functional and aesthetically pleasing.

Through CAD-CAE integration, designers can also perform tests on the printed circuit board to evaluate its performance in the actual environment. Ultimately, ECAD-MCAD collaboration is essential for successful PCB design.

Would like to know more about the ECAD and MCAD or Circuit board fabrication? Email us at sales@pnconline.com

Main aspects of the PCB industry – PCB Design, Manufacturing & Assembling

In this article, you’ll get to know the fundamentals of PCB manufacturers and how our company “PNC Inc.” is unique from other manufacturers in the United States.

What are the three main aspects of the PCB industry?

According to our experience of more than 50 years as the leading PCB Company in the industry, we can easily write that three main aspects in the PCB industry for which most clients look for are:

PCB Design
PCB Manufacturing
PCB Assembly

Design, Manufacturing, and assembling of PCB is a systematic method for examining the parts and components which is needed to execute. It included obtaining costs of a commodity and seeks to cut costs before actual development begins. There are specific manufacturing, design, and assembling principles required to be following during the PCB process execution of any electrical or electronics part. Eventually, a final design concludes the series with a review among the most common issues related to the PC Board or Printed Circuit Board.

Until continuous description, it is important to explain how the word ‘manufacturing design’ is used when speaking more generally and when talking more directly about PCB output. In general, design for manufacturing and assembling may lead to the simplification and optimization of a model or theoretical design in anticipation of their production. As these words are used to describe PCBs, they also imply a more straightforward study of possible production problems.

Ideal Design can Help PCB Fabrication:

The purpose of addressing the nature of manufacturing and assembling, in general, is to decide how a commodity can be produced and installed most cost-effectively. Manufacturing is to be done in a way to reduce the total cost and, more evidently, assembly design is required to be done to reduce commodity inputs, capital operating costs, and labor reduction. The emphasis is both on applying standards to lower manufacturing costs and also aim to shorten the product creation period. The fusion of these methods is often widely called manufacturing and assembly design for Mil-Spec PC Board.

Rules of PCB Manufacturer and Assembly:

After the conceptual Circuit Board Fabrication design has been developed, the company is required to research opting towards the most economical way of executing the PCB fabrication. The construction of a prototype or the development of a new version of a product could require a conceptual design. Once a conceptual design has been developed, a designer review will analyze the design’s bill of materials.

Try to use fewer parts in a design:

Reducing the number of components in PC board manufacturers is a simple aim with clear advantages. It would minimize construction costs and assembly difficulty, while not as obvious, it is of great advantage. When PCB assemblies are supplied using devices, for example, they are restricted to the number of modules they may be supported in a single port.

Being aware that if use many parts are used by pick and place machines in circuit boards fabrication will contribute to non-assembly. Cost savings are obvious. For example, if a design needs a resistance of 20K ohms, and 10K ohms resistance has been already used in the design, it might also be easier to use two 10K ohms resistors in sequence if this reduces the amount of time the computer picks and places simulation.

In the same way, you can speed assembly time up and transfer portions of the test requisites to the IC maker in search of regularly integrated circuits that can combine part of the specification into one IC. Having in mind the number and form of PCB components is perhaps the most significant move towards reducing total PCB manufacturing costs. In a term, the elimination of a component for the final design would decrease BOM costs, minimize purchase costs, production time, test time, and workload assembly feedback.

Use Original Components:

The use of composite materials will dramatically reduce construction time and expense. It goes without saying that defining a specific custom approach would significantly raise the initial cost of every product which may render a concept unfeasible. In addition, the use of more generic materials will shorten the supply chain of a commodity and mitigate supply issues. The fact that their measurements are easier checked until they are included in a PCB design specification is another advantage to prefer electronic interfaces.

Use Multifunctional Parts for Printed Circuit Design:

When an electric power part may be used for many uses in a model, the designer must take account of it. For instance, utilizing a container that can also act as hot in a design can give considerable cost control. A further definition of a dual-use mechanism through the use of a blockade as a link to ground from PCB board assembly.

Install all PCB Assembly Directions:

If practicable, all the board companies would plan all pieces to be assembled from the same side of an assembly around one axis. This is also referred to as a “Top Down” assembly in which all parts from top to bottom are placed. The use of this kind of single-sided assembly method saves time when a product is turned and rotated during assembly. As for all of the design choices, PCB design engineers would then have to consider whether producing a smaller PCB fabrication with components placed on every s sides of the board safer is compared with developing a larger PCB.

Advantages of PCB Manufacturers and Assembly:

• Fewer pieces ought to be handled and recorded.
• The expense of billing products should be minimized.
• The cost of handling can be reduced to some degree.
• Labor and input of electricity should be reduced.
• The total production period may be reduced to significantly increase manufacturing productivity.
• Lower sophistication results in greater efficiency.
• Increasingly competitive products should be.
• High Replacement margins are achieved.

The Circuit Printed Boards Manufacturers and prototype PCB manufacturers should have a simple way to reduce the next design bill. The advantages of reducing the number of designs are evident. Materials will become more viable as they are cheaper and less vulnerable to loss, however by lowering the number of materials used in the production of product costs, paperwork needs will be decreased and the work required for SMT assembly. All these factors contribute to lower manufacturing costs and encourage either better commodity or price profits at more affordable prices.

In addition, the processing period is shortened so the goods can be delivered to customers in less time. An optimal printed circuit board may be built with the right PCBA assembly considering all the above implementation of these objectives.

At PNC Inc., You’ll get your PCB done from any of the following design tools of your choice as we have an in-house facility available for all the tools.

• Cadence Allegro v16
• OrCAD Capture v16.3 & OrCAD PCB Designer v16.3
• PADS v9
• Signal Integrity Analysis: Hyperlynx

You will get the following deliverables from us:
• Gerber, drill files & PCB File
• Assembly and fabrication files
• Formal drawings on your (client) desired format

Why you should choose us & why we are better than others in the Market?

At PNC Inc., we have got the facility of executing all the design, manufacturing, and assembling in the same building. In this way, you don’t have to visit different places to check the progress of your work. You’ll get all the things done in the same building at our Nutley, New Jersey facility. That’s why we are a “one-stop-shop” and providing all the services under the same roof.

PCB assembly Pre-Reflow FAI

First article inspection (FAI) prior to SMT assembly is a design verification methodology that provides a reported verification and validation of details of a product on the shopfloor per its manufacturing procedure and requirements. There are various ways to perform FAI, from both supplier’s and customer’s side, making it a very dynamic process. This means that each organization can tailor its FAI method to benefit itself and consequently, its customer, yet maintain rigid performance standards at the same time. FAI involves qualitative and quantitative measurement. FAI is also highly effective since it can potentially fulfill process validation requirements of quality management systems like ISO9001 or AS9100.

In the PCBA manufacturing industry, FAI can be effectively employed in validating materials for manufacture, underlying technologies, manufacturing processes used, packaging, and equipment. It can also be applied to a batch of a given sample-size from a mass-production instead of just the first sample, as the name might suggest. At PNC, strict adherence to our manufacturing standards helps in production with better yield but at the same time, facilitating dynamic validation techniques in our manufacturing process allows us to reduce lead time. The focus of FAI in PNC assembly lies in validating the pcb assembly before reflowing so that the SMT team can make necessary adjustments for the next batch, saving time and effort during rework. They are also responsible for validating the correct loading of the right component in its allotted slot per the assembly program. This extra step helps in validating the placements of the components and improves the turnout rate for a successful production.

All aspects of reflow also must be amenable to improve solder performance and the same translates to our guideline where only the most recent batch of solder paste (with most activity) is permitted for use, which is validated by FAI. Apart from pre-reflow FAI, post-reflow X-Ray also helps validate the solder performance based on the reflow profile which can then be adjusted accordingly so that all components are successfully soldered. This can be similarly implemented at the rest of the printed circuit board assembly stages as well up to testing. But there is a necessity to establish a constant groundwork or point of reference in such a dynamic process to give each validation at a particular stage, the perspective of what changes were made before. This is achieved by using a single piece of documentation used to validate at every stage, wherever applicable, and that document reports any changes made to the processes or product, to the next stage.

pcb_assembly
pcb_assembly

PNC employs the use of AEGIS software to combine SMT assembly guidelines and inspection requirements into a single document (internally referred to as AEGIS). The AEGIS is used to report every single FAI validation to different stages of assembly. PNC’s FAI process for SMT starts with thorough solder paste FAI & its validation, which will be detailed in another post. For this post, let us consider pre-reflow FAI and highlight its validation process since it is the most crucial stage. The procedure is as follows:
1. The SMT team confirms the correct allocation of components as given in the assembly program. This is done by comparing each component with its description, measuring component value wherever applicable, and checking for physical marking on ICs. This helps in validating that the right component has been placed in its respective position on the board.
2. The next step involves checking for the polarity of components, wherever applicable. This is a two-step process. First, the supply angle of a component in the reel needs to be checked and second, the placement of that very component on the PCB needs to be verified.
3. Now, once the first board is assembled, the pcb assembly is put through FAI, where the placements of all components on the board are checked, any necessary placements that remain are placed manually and polarities of applicable components are checked and changed as per what is given in the AEGIS. The same changes are made in the assembly program to avoid the same occurrence in the rest of the batch. Components that are designated as DNP (Do Not Place) are also checked and finally, the solder paste information such as solder type, lot number, date of manufacture, and expiry are checked to ensure that the right solder paste has been used.
4. All these checks translate to notes, remarks, and checks on the AEGIS document, which can then be referred at later stages up to final inspection. If the job in consideration is a repeat job, it can be optimized to avoid any errors made in the first batch of production.
5. The board is then sent through reflow. Once reflowed, the board is extensively inspected under high magnification camera for quality of component placement, solder joints etc. yielded by SMT process.
6. Each section in the AEGIS is meant for FAI by a different team performing a different operation.

PNC has been able to reduce its lead time and increase customer satisfaction significantly and our personalized and successful FAI is a big factor contributing towards it. Further development to the FAI process is underway as much as it is needed to achieve better production yield over time for all the different types of PC Board assembly that are assembled at PNC.