Tag Archives: Printed Circuit Boards

Bill of Materials Management In PCB Design Process

Managing the Bill of Materials in the PCB design process can be a complex and time-consuming endeavor. Luckily, there are ways to make this process easier and more efficient. So, we will explore how to streamline BOM management in design so that you can save time and money. You will learn the best practices for maintaining an accurate BOM, methods for keeping track of changes, and tips for improving the overall design process. With these strategies, you can produce high-quality products faster and more effectively.

The Different Types of BOM

The BOM (Bill of Materials) is a document that lists all the parts, components, and materials that a product’s manufacturing requires. This includes all the parts used in assembling a product, such as the PCBs, capacitors, resistors, integrated circuits, etc. every industry needs the BOM, from automotive and aerospace to electronics and medical devices.

There are different types of BOMs, and the most common type is the pcb assembly BOM, which is used for producing products on an assembly line. This type of BOM contains detailed specifications and component information, such as the component type, quantity, and vendor information.

Another type of BOM is the engineering BOM, which is essential for design purposes and contains details about each component, such as electrical ratings, tolerances, and sizes.

The third type is the service BOM, which is necessary to keep track of spare parts or to identify which components need repair or replacement.

No matter what type of BOM you use, you should have an accurate and up-to-date list of all the parts used in the design and production process. Without an accurate list, you could end up with incorrect parts involving extra work while repairing or replacing them. Having a thorough understanding of the different types of BOMs will ensure that you can properly manage your products and design processes.

The BOM Management Process

Managing your BOMs correctly can help ensure that your designs are accurate and complete. Besides, it will minimize any potential errors or problems that could arise during the fabrication and assembly process.

The BOM management process typically begins with designing the PCB. This includes determining the parts that you will need for the design it also helps determine the components and their connections.  Once the design is complete, you can create a BOM that outlines all the essential components and connections. The BOM should also include certain information, such as part numbers, descriptions, quantities, and other relevant details.

After creating the BOM, you have to send it to the manufacturer for review and approval. This step ensures that the manufacturer can accurately produce the board with all of the required components. After the review is complete and the BOM has been approved, you can send it to the supplier for ordering.

Throughout the entire process, it’s important to stay organized and maintain accurate records. This includes tracking changes to the BOM, ensuring that the parts are available and compatible with the design, and regularly updating the BOM as you require.

With a well-managed BOM system in place, it’s much easier to keep track of all of the components and connections in your design and ensure that everything is correct and up to date.

Having this level of detail and organization allows you to quickly troubleshoot any issues that may arise throughout the manufacturing process. Besides, having accurate BOM data makes it easier to identify discrepancies between what you ordered and what you received from the suppliers.

The most effective way to manage your BOMs is to use software specifically designed for this purpose. There are many different options available on the market today, so you should do some research to determine which one best fits your needs. These tools allow you to create detailed and organized BOMs quickly and easily, as well as keep track of changes over time. Moreover, some of these programs come with features like automated bill creation and interactive reports, making it even easier to manage your projects.

By streamlining your BOM management process through software solutions, you’ll save time and money in the long run.

Best Practices for BOM Management

BOM management is an important part of any PCB design process. To ensure accuracy and consistency, there are some best practices to follow when managing BOMs.

  1. Start Early: Starting the BOM early in the design process allows for errors to be identified and corrected quickly. It also gives the design team time to make any necessary changes before the board goes into production.
  2. Update Frequently: It’s important to keep the BOM updated as the design changes. Make sure the BOM reflects the changes like replacement or removal of any component.
  3. Use Automation: Automating the BOM management process can help reduce errors and save time. You can use the automation tools such as software or scripts to generate, update, and manage the BOM.
  4. Keep Records: Keeping records of all BOMs throughout the design process allows for quick reference and helps identify any inconsistencies.
  5. Maintain Accuracy: The accuracy of the BOM is essential for the success of a PCB design. Check for any errors or typos in the BOM before sending it out for production.

Following these best practices for BOM management will ensure accuracy and efficiency in your design process. By implementing these practices early on in the design process. You can avoid costly mistakes and delays that can arise from using outdated or inaccurate BOMs.

Having accurate BOMs helps during testing and post-production analysis since they provide an accurate inventory of components used during manufacture. With proper BOM management processes in place, you’ll be able to complete projects faster while still producing high-quality products.

During the development stage, designers should always check the BOM against their schematic diagram to verify accuracy and compliance with industry standards. This verification process should take place after every step of the design process. Moreover, you should conduct it according to industry regulations.

When assembling the Printed Circuit Board, you should double-check the components against the BOM to ensure that nothing is missing. The testing should also involve verifying that all parts meet the specifications listed on the BOM.

After completing the design and assembly process, you should have one final review against the original BOM to make sure everything matches. Implementing these practices into your workflow will help streamline your bill of materials management. Eventually, it will result in a successful PCB project.

 What Else To Consider

In addition to knowing the different types of BOMs, there are some other things to follow when managing them.

For example, always check the validity of any part numbers provided on the BOM. It is also wise to provide clear descriptions for any custom parts or non-standard items included in the list.

Furthermore, make sure any drawings or schematics referenced on the BOM are current and accurately reflect any changes made throughout the design process.

Also, carefully review any cross-references provided between components, especially if any of those components become obsolete or unavailable during the product life cycle.

By following these best practices, you will be able to streamline your bill of materials management in design. Doing so will make sure that any components specified are valid and accurately reflect any changes made during the design process, ultimately saving time and resources.

Frequently Asked Questions

What is BOM?

BOM means the bill of materials, and it is a document that lists all the parts, components, and materials that a product’s manufacturing requires.

What Is There In BOM Of A PCB?

A BOM includes all the parts used in assembling a PCB, such as capacitors, resistors, integrated circuits, etc.

What is a PC Board?

A printed circuit board or PCB is a way to provide signals to help an electronic device to function. It gives mechanical support to various parts of electronics.

What Is Schematic Drawing In PCB?

A PCB schematic is a diagram with symbols that define different components. It also shows the electrical connection of components.

What Are The Benefits Of BOM Management?

Maintaining accurate BOMs throughout the entire design cycle can help improve product quality. Moreover, if a project has multiple designers working on it, having well-maintained BOMs with each revision ensures everyone is up-to-date with the latest version.

Wrap Up

When it comes to design, Bill of Materials (BOM) management is an essential part of the process. There are different types of BOMs, and the most common type is the manufacturing BOM, which is used for producing products on an assembly line. This type of BOM contains detailed specifications and component information, such as the component type, quantity, and vendor information.

Using automation tools for BOM management can also speed up processes by making it easier to track components and changes. After creating the BOM, you have to send it to the manufacturer for review and approval. This step ensures that the manufacturer can accurately produce the board with all of the required components.

Would like to know more about the Bill of Materials Management in the Design process or printed circuit board assembly? Email us at sales@pnconline.com

ET Testing for Printed Circuit board Fabrication

As technology advances, so does the complexity of multilayer printed circuit boards. To ensure that these boards are functioning correctly, it is essential to conduct effective electrical testing during the manufacturing process. Here, we will discuss the importance of electrical testing in multilayer PCB manufacturing. We will also overview the different types of electrical tests which are applicable, and explain how to ensure that the practice of these tests is effective.

By following the right guidelines, you can ensure that your multilayer PCBs are manufactured according to the highest standards of quality and reliability. So, testing allows manufacturers to ensure the quality of their products and that they meet the customer’s requirements.

The Importance of Electrical Testing

The electrical testing of multilayer printed circuit boards is a critical step in the manufacturing process. It ensures that the components on the board are functioning properly and that the board can support the expected load and environment. Proper electrical testing helps identify any defects or performance issues in the PCB before it goes into use.

Electrical testing is an essential part of ensuring the quality and reliability of a PC Board. It is also a crucial factor in meeting safety and regulatory standards, as it helps to detect any potential problems that could lead to product failure or safety issues

Remember, that electrical testing does not replace physical inspection. However, it is still an important tool for identifying hidden defects that would be difficult to detect by a visual inspection.

In other words, electrical testing is an essential step for a PCB Manufacturer as it helps to ensure the safety, reliability, and performance of the product.

The Different Types of Electrical Tests

When it comes to electrical testing in multilayer PCB manufacturing, you would see several different types of tests. These tests can range from basic electrical parameters such as voltage, current, and resistance, to more complex tests such as signal integrity and thermal imaging. Let’s take a look at some of the most common electrical tests for PCBs.

  • A visual inspection
  • Electrical continuity
  • Solder joint integrity
  • In-circuit test
  • Flying probe test
  • Boundary scan test
  • Continuity test
  • Insulation resistance test
  • Open circuit voltage test
  • Functional test.

Visual inspection is an initial step in electrical testing that involves a visual examination of the PCBs to detect any defects in the components. Electrical continuity tests check to make sure that the connections between the components are intact and the power is flowing properly through the board. The tool for this test is often an ohmmeter.

The solder joint integrity tests ensure that all the solder connections are properly soldered and functioning correctly.

The in-circuit test checks for any short circuits, broken connections, or other defects in the circuit design.

The flying probe test verifies that all the pins are connected properly.

The boundary scan test checks for any problems in the data path signals.

The continuity test measures the resistance of a circuit by sending a small electric current through it. If the resistance is too high or too low, then it indicates an issue with the circuit. Engineers conduct this test to make sure that all the traces, components, and vias on a Printed Circuit Board are properly connected.

The insulation resistance test checks for any potential problems with insulation between the conductive paths on the board. It does this by measuring the amount of resistance between different parts of a circuit. If the resistance is too high, then it could indicate a problem with the insulation on the board

The open-circuit voltage test checks for any potential problems with short circuits and opens on a board. It does this by measuring the amount of voltage between two points on a circuit. If the voltage is too high or too low, then it could indicate a problem with the circuitry on the board.

The functional test checks that the board is functioning properly by sending various signals through it and verifying that they are working correctly. This test can also be used to verify that all components on the board are connected and functioning properly.

Overall, these different types of tests help ensure that the multilayer PCBs meet the desired performance specifications and will function properly. Testing is essential to detect any issues before they become major problems down the line.

Remember that each type of test has its unique purpose, so you must conduct them all to gain the full scope of results. After each type of test has been conducted, the results should then be compared against the customer’s requirements and expectations. If any discrepancies are found, further investigation should be conducted to determine the root cause of the issue.

Once all tests have been completed, engineers should take corrective actions if necessary.  They should thoroughly document any changes and provided them to the customer for full transparency over the production process.

It is also essential to have periodic re-testing throughout the product’s life to make sure that performance remains consistent over time. By taking all of these steps, manufacturers can ensure that their products meet customer standards and provide a reliable operation over time.

Factors to Consider When Conducting Electrical Testing

Electrical testing is a critical part of multilayer PCB manufacturing and one of the most important steps to ensure that the finished product will perform correctly. When performing electrical testing, you must consider several key factors, such as:

1: You must consider the expected environment and the use case of the PCB. You may require different tests, depending on the intended application. For example, if the PCB application is for a high-temperature environment, it should be tested for high-temperature performance.

2: You should consider the capabilities of your testing equipment. Different tests may require different types of equipment. If you don’t have the right type of equipment, it’s important to acquire the necessary testing tools to ensure accurate results.

3: You must also consider the layout and connections of the PCB. When conducting tests, it’s important to make sure that all the components are connected properly and that no loose connections or other issues exist.

4: While performing the electrical tests, you must consider the desired level of accuracy and precision. The more precise and accurate the test results, the better you can ensure that the PCB will perform correctly in a particular application.

Tips for Conducting Effective Electrical Testing

Start with The Basics: Before conducting the electrical testing, you must start with the basics. Make sure your multilayer PCB design is sound and that all the components are correctly placed. This is critical for ensuring accurate results.

Check For Short-Circuits: Short circuits can be disastrous for multilayer PCBs, so you must check for them during electrical testing. Look for any evidence of heat damage or discoloration on the board, as these are signs that short-circuit may be present.

Use An Oscilloscope: Using an oscilloscope is a great way to detect any issues with your multilayer PCB design. This tool can show you the exact path of electrical current and pinpoint any problems in the board’s circuitry.

Inspect The Components: During electrical testing, you should also inspect each component on the board to ensure a secure and precise connection. Look for signs of physical damage, such as bent pins or broken solder joints.

Test Each Layer Separately: When performing electrical testing, you must test each layer of the PCB separately. This will help you to identify any problems on a specific layer, rather than having to go through the entire board again.

Look for Potential Issues: Finally, keep an eye out for any potential issues that could arise during testing. Be aware of any changes in the voltage or current that could indicate a problem with your design.

By following these tips, you can ensure that you are conducting effective electrical testing in multilayer PCB manufacturing and get accurate results every time.

Final Thoughts

Electrical testing is an important part of the multilayer printed circuit board manufacturing process. When it comes to electrical testing of multilayer PCB, several different tests should be conducted to ensure that the board is functioning properly. These tests involve different tools and equipment. Depending on the nature of the PCB application and the type of the test. When performing electrical testing, you must consider several key factors as described above.

In the above section, we discussed the basics of electrical testing in multilayer PCB manufacturing, including the types of tests to use, how to set up an effective testing process, and tips for successful testing. Now, you should have a better understanding of how to conduct effective electrical testing in multilayer PCB manufacturing. By performing various types of electrical tests on your multilayer PCBs, you can ensure that they are functioning properly and are ready for assembly and use.

Would like to know more about the Electrical Testing or pcb assembly? Email us at sales@pnconline.com

FQC & Packaging-Multilayer PC Board Process

As technology continues to evolve, multilayer PC boards are increasingly being used in many industries. Multilayer PCBs offer greater levels of complexity and reliability than traditional single-layer PCBs, making them an ideal choice for many applications. Here, we’ll explore the process of creating and using multilayer PCBs, from final quality control (FQC) to packaging.

FQC is a critical part of any PCB manufacturing process, as it ensures that the products being manufactured are of the highest quality and free from defects. This allows manufacturers to deliver a reliable and safe product to their customers, which helps to build trust in the company’s products. After an item passes through FQC, it then enters into the packaging phase of the production process. Packaging plays an important role in protecting the item while also displaying its features or functions to potential buyers.

Multilayer PCBs often require special attention during packaging due to their fragility and intricate design. For example, they should be placed into an antistatic bag or a protective casing before being shipped out. Moreover, you need extra care when shipping them to prevent them from getting damaged or lost during transit. Manufacturers must also make sure that their multilayer PCBs comply with regulatory guidelines regarding hazardous materials, shipping labels, etc.

By taking all these necessary steps, manufacturers can help ensure that their multilayer PCBs reach their customers in perfect condition.

What Is A Multilayer PCB?

A multilayer Printed Circuit Board is a type of circuit board that consists of multiple layers of copper and other materials stacked together to create a single unit. The multiple layers of the PCB allow for more components, and more complex circuit designs, than are possible with a single-layer PCB. Multilayer PCBs are suitable for various electronic products, from mobile phones to televisions.

A multilayer PCB typically consists of at least four layers: the core, the ground plane, the power plane, and the signal layers. The core layer is the base of the board and provides structural support for the other layers.

The ground plane acts as an electrical shield for the other layers, providing a reference point for signals to flow through.

The power plane provides power to the circuit, while the signal layers contain the traces and pads that connect the components of the circuit.

The advantages of multilayer PCBs include their ability to provide a large number of electrical connections in a small area and their low-cost production. Besides, they are relatively easy to repair and maintain, making them ideal for high-volume production and product design.

The Benefits Of A Multilayer PCB

Multilayer printed circuit boards offer significant advantages over single-layer PCBs in terms of size, complexity, and cost. By minimizing the space required for electrical connections, multilayer PCBs allow designers to create compact, lightweight products.

The multilayer PCB also offers great signal integrity, as it can handle higher frequencies than a single-layer board. Multilayer PCBs are also more durable than single-layer boards as they are less prone to cracking due to their greater thickness and fewer layers.

These boards are easier to work with, as the designer only needs to assemble one set of components, instead of the multiple sets required for single-layer boards. This makes them ideal for applications where cost and time are critical.

The Process Of Manufacturing A Multilayer PCB

After PCB design, it’s time to begin the manufacturing process. This is an incredibly complex and time-consuming process that requires highly specialized equipment and skillful professionals.

First, you have to print the layers of the PCB onto a flexible circuit substrate. This substrate contains the electrical pathways that make up the circuit boards. These pathways are etched out using either chemical or mechanical methods. This process can take several hours, depending on the size and complexity of the board.

After the layers printing, you have to laminate them together with heat and pressure. This ensures that all of the components and traces remain in place while being soldered. During this step, all of the holes for the components and other features are also drilled.

In the end, it’s time to assemble the board, which involves soldering all the components in their respective places. You have to do it by hand or with automated equipment, depending on the size of the project. After soldering, comes the board’s testing to ensure that all of the components are functioning properly. If everything checks out, then the multilayer PCB is ready for use.

Testing A Multilayer PCB

You have to test a PCB after manufacturing to ensure that all components are functioning properly. Moreover, the board should meet the customer’s specifications. Depending on the complexity of the design, the testing procedure may require multiple tests to confirm the board’s performance.

FQC-Final Quality Control Test for PCB

FQC is an essential step in the Printed Circuit board Fabrication process of any printed circuit board. This is especially true for multilayer PCBs, which have more layers and complex designs. FQC is an important part of the manufacturing process because it ensures that the board meets all of the design and quality specifications required.

FQC stands for Final Quality Control. It is the process of testing a multilayer PCB (printed circuit board) to make sure that it meets the manufacturer’s quality standards and is free from any defects or faults.

FQC involves performing tests on each layer of the board to ensure that all components, traces, and other features are placed correctly and working properly. The tests include visual inspection, electrical testing, functionality tests, thermal cycling tests, and more. FQC also ensures that the board is well-packaged and ready for shipping.

By thoroughly testing the board, you can detect any possible issues before it is shipped out, which saves time and money in the long run. FQC also allows manufacturers to remain compliant with industry standards, such as IPC standards.

The Testing Processes

Visual Inspection: Visual inspection of the multilayer PCB is one of the simplest but most important tests for FQC. This includes inspecting for proper solder joint formation, ensuring all components are mounted correctly, and checking for any shorts, opens, or other potential defects.

Electrical Testing: Electrical testing checks the electrical characteristics of the multilayer PCB and helps ensure it meets the specifications set out in the design. Tests such as ICT (In-Circuit Test), flying probe test, boundary scan test, and functional testing help measure the board’s electrical parameters and performance.

Thermal Testing: Thermal testing measures how well the multilayer PCB dissipates heat. This is an important test for understanding the temperature of various components on the board and making sure they don’t exceed their limits. Tests such as IR reflow, convection oven, thermal shock, and mechanical vibration can be used to perform this type of testing.

Burn-In Test: The burn-in test helps find any weak components on the board and make sure they will last throughout its life cycle. You have to heat the board to a certain temperature and maintain it for a specific amount of time. If any components fail this test, they will be replaced with more reliable ones before shipping.

By performing all these tests, manufacturers can guarantee that the boards they ship are of high quality and able to function properly.

PCB Packaging

The last step in the multilayer PC Board Fabrication process is packaging. This involves protecting the delicate components on the board from environmental damage and ensuring that it is safe for transport and use. Depending on the application, this could involve encasing the board in a protective shell, adding shock-absorbing features, or both. The type of PCB packaging depends on the size of the board, the environment in which it will work, and the overall design of the board.

Packaging not only serves to protect the board and its components but can also have an aesthetic function. For example, if you are using your multilayer PCB in a consumer product, packaging can add a layer of branding to the device, making it look more professional and attractive to potential customers.

No matter what type of packaging is there, it should provide robust protection against physical damage, dust, and moisture, as well as electromagnetic interference. If the board will be subject to extreme temperatures or pressure, special packaging may be required to protect it from these conditions.

So, packaging plays an important role in the fabrication process of a multilayer PCB. It provides protection for the board and its components, as well as adds an aesthetic element to the device. Furthermore, FQC must be performed on the packaged board to ensure that it is fully functional and meets any applicable industry standards.

Final Thoughts

FQC stands for Final Quality Control. It is the process of making sure that the product being manufactured meets all the specifications required by the customer. This includes a thorough inspection of the product, testing its performance and quality, as well as verifying any customer-specific requirements. FQC is a typical process to test consumer electronics, medical equipment, automotive parts, and other complex products.

After completing all tests on a multilayer PCB, it is ready for use in its intended application.

Would like to know more about the FQC Packaging in the multilayer PCB or prototype pcb manufacturer? Email us at sales@pnconline.com

Latest Development in the Printed Circuit Board Industry

If you look at the history of printed circuit board, you will see continuous development. PCB design has changed with time due to changing technology. These days, manufacturers feel a lot of pressure as they have to build circuit boards with the futuristic demands in terms of function. The latest PCB development is due to IoT (the internet of things).

The digital era is full of smart devices which need compact circuit boards with several layers. It is a great challenge for manufacturers to make smart PCBs maintaining their basic function. PCB assembly becomes hard for those who don’t follow the latest assembly trends. The main approach of the manufacturers is to create low-volume products to test their function before moving to mass manufacturing.

The cost of advanced PCBs is also increasing that’s why manufacturers are using the latest techniques to reduce the cost. Let’s discuss the new trends in design and manufacturing.

Autoplacers are Trendy

Now, design has auto places, as they help in fast assembly and the end product becomes more effective. A design with autoplacers involves automation that helps have autorouters to save assembly time and speed up its marketing. Moreover, CAD software and autoplacers have made it easy to develop a multi-layer PCB.

Boards are Becoming More Powerful

New advances demand high-power circuit boards which can handle a high voltage of up to 48V or above. Today’s devices have high-power boards because they can have more components and high-power batteries to work for longer.

Though a PCB is getting more effective, it’s also getting thinner and lighter than before. The latest PCB is better in terms of heat absorption, as it can tolerate high temperatures and is good at heat dissipation.

Easy Waste Management

It is essential to manage the waste while making electronics, as it affects the environment, causing pollution. So, engineers are making biodegradable PCBs to protect the environment from chemicals. Moreover, biodegradability helps separate metals from waste, such as gold, silver, tantalum, and palladium, and reuse them after refining them. Moreover, there is no hassle of mining such metals, so you can save lots of energy and money.

More Flexible Circuit Boards

A PC Board has to be more flexible to provide smart functions. You can install many components on the board in low-volume production. A flexible circuit board is better than a rigid board as it can manage bending and mode issues. You can have any shape out of a flexible PCB. Besides, the through-hole assembly of a PCB also becomes easier if it’s flexible. Lots of medical equipment have flexible circuit boards, as they help accommodate advanced features.

Some Future Trends of PCBs

PCB is going through massive upgrades regarding design, accessories, components, and advanced electronics. Manufacturers use practical techniques to develop PCBs to meet the new demands, and there is always some growth in this industry. In the future, you will see exciting developments as described below.

  • You will see advanced cameras with PCBs in many industries, such as medical equipment, electronics, and surveillance.
  • Electronic gadgets with 3D-printed circuit boards will have a better design and function.
  • According to research, a flexible circuit board had a huge demand and its market value in 2022 was approx. $27billion.
  • The future will have less traditional and more advanced PCB with a through-hole and surface mount technology. However, new technologies are essential due to the reduced sizes of the devices, so manufacturers should work on them more.

PCB designers are creating more flexible and contemporary boards in alliance with engineers. You will see recyclable materials in small circuit boards having a wireless function. Besides, a PCB is getting more energy-efficient and portable and is capable of providing artificial intelligence AI.

The new technology involves more legal standards, so you have to consider it. The latest technology is making PCB assemblers more expert at managing new design trends and construction techniques. You will see better standards due to continuous development in the PCB industry.

The Growth Trends in a PCB Market

There is a huge market in different industries, such as automotive, industrial, consumer electronics, healthcare equipment, aerospace, defense IT, communication, geography, etc. PCB is either single-sided, multilayer, or HDI, and a multi-layer PCB is increasing in demand due to compact devices.

Now, we will discuss the PCB market in terms of revenue which varies according to its application.

Consumer Electronics: The CTA (Consumer Technology Associates) shows that the revenue of the consumer electronics industry in the U.S. was around 5.2 billion dollars in 2022. Such a revenue happened for the first time, as it was 2.8% more than the revenue earned in 2021 which means more PCBs are in demand.

Connected Vehicles: You will see PCBs in vehicles because of a wireless technology that connects you to each other while traveling. You can connect a vehicle to a smartphone or other such devices. You can track your car, check the weather, unlock the car, check the battery status, and much more just because of smart technology. So, a PCB makes all these wireless and remote features effective.

HDI Circuit Boards: High-density PCBs are also developing faster due to high demand. Such boards help connect smart devices and boost signal transmission, providing effective routing.

Biodegradable PCBs: The market for safe PCB materials is increasing due to pollution and landfills. New materials are easy to reuse, instead of putting them in the waste or burning them. This development will increase in the coming years, giving us more green and recyclable materials.

 Which PCB Market Has More Share?

According to research, PCB in consumer electronics is growing faster, and the industry is making more money than before. This is because smart devices are developing and continue to grow due to the increased population. Research by Ericson experts shows that smartphone users will go up to 7,840 million by 2027, whereas this figure was only 5,950 million in 2020.

PCB manufacturing is increasing due to compact laptops, mobile phones, and tablets. PCB companies are focusing more on design to meet customers’ requirements.

More vendors are there in the U.S. market to fill the demand for consumer electronics, according to the APCI (American Progressive Circuits Inc). Manufacturers get a CAD-based PCB design and convert it into a circuit board in a short time which helps in mass production. So, the latest PCB manufacturing techniques can help you to have more production in a little time. It is easy to have a customized PCB with the help of the latest design software.

The demand for PCB is also increasing due to smart TVs and online TV apps, such as Netflix, Sky Go, Amazon Prime, and Google Play. So smart TVs will adopt the latest PCBs now and in the future.

Research by CTA shows that smartwatches made $7.1 billion in revenue in the United States, in 2022 which was 8% more than revenue in 2021. Whereas the earbuds made 3% more revenue in 2022. So, all these developments show an increase in PCB manufacturing.

Latest PCBs in Asia Pacific

As automotive and electronics are growing fast in the Asia Pacific, the market for PCB is also increasing. This region is also becoming the center of semiconductors in the whole world, increasing PCB manufacturing.

The IoT is getting popular and has become the key factor in enhancing PCB sales in the Asia Pacific. The high-level function of PCBs and their assembly flexibility ensure their future growth.

PCB production and consumption are high in China which is a hub of PCB assemblers and manufacturers. You will see high-tech PCB manufacturers in China who makes various types of boards, such as:

  • High-Frequency PCBs
  • Multi-layer PCB
  • Heavy Copper PCB
  • HDI PCB
  • Metal Core PCB
  • Prototype PCB
  • Flexible PCB
  • Many others

Other than China, India is also making electronics and there is a huge demand for PCBs. Moreover, the automotive and aerospace industries will have increased sales in Asia Pacific and worldwide. All these advancements motivate PCB designers and fabricators to develop highly effective circuit boards and introduce new techniques in this regard.

Final Words

Printed circuit boards go through a design and assembly process which is developing faster due to fast technology. New PCBs are more flexible because manufacturers want them to fit into different types of electronics. PCB is going through massive upgrades regarding design, accessories, components, and advanced electronics. Manufacturers use practical techniques to develop PCBs to meet the new demands, and there is always some growth in this industry.

The cost of advanced PCBs is also increasing that’s why manufacturers are using the latest techniques to reduce the cost. Engineers are making biodegradable PCBs to protect the environment from chemicals. PCB designers are creating more flexible and contemporary products. Besides, a PCB is getting more energy-efficient and portable and is capable of providing artificial intelligence AI.

Would like to know more about the latest development in the PCB industry or printed circuit board assembly? Email us at sales@pnconline.com

Etching Process of a PC Board

Printed circuit boards are necessary for multiple devices and equipment, including electronics.  PCBs are also core features of smart devices that’s why they should have high-quality manufacturing.  Etching is an important step in the PC Board Fabrication process. It is used to remove unwanted copper from the board and create the desired circuit patterns. This process is also known as photolithography, and it requires a special etching solution and a masking material to accurately etch the board. In this article, we will discuss the etching process in PCB manufacturing in more detail.

Understanding PCB Etching

Etching is the process of removing unwanted copper from the printed circuit board by using a chemical etching solution. The etching solution comes up with different compositions like it can be a mixture of hydrochloric acid (HCl) and ferric chloride (FeCl3). But, there are also other solutions that we will discuss here.

PCB manufacturers apply the etching solution to the board through a stencil, which has a masking material such as photo-resist. This masking material blocks the etching solution from reaching the desired copper traces and protecting them from the etching process.

Etching Process in PCB Manufacturing

Manufacturers use an etching process to create the desired copper traces on the PCB. During this process, they apply a resist material to the board. Such a resist material can either be a photo-resist or a dry film resist. The resist material is then exposed to ultraviolet light, which causes the resist material to harden. This hardened resist material prevents the etching solution from reaching the desired copper traces. The etching solution is then applied to the board, which removes the unwanted copper and leaves the desired copper traces intact.

Advantages of PCB Etching

Etching is an efficient and cost-effective method of creating the desired copper traces on the Printed Circuit Board. It is also very accurate, as it can create very fine details on the board. In addition, etching is a quick process and does not require a lot of manual labor.

  1. 1. Improved Accuracy

Etching is a precise process, which allows for finer lines and more accurate features than other methods. This makes it an ideal choice for complex designs and high-density PCBs.

  1. Greater Flexibility

You can use etching to create a variety of features, including traces, vias, micro-vias, and blind and buried vias.

  1. Cost-Effectiveness

Etching is one of the most cost-effective methods for PCB manufacturing, as it requires it does not involve much production costs.

  1. Reduced Waste

Etching produces less waste than other methods, as it uses a minimal amount of material to create the desired features.

  1. Time-Saving

Etching is a fast method of producing PCBs, as you can complete the entire process in a matter of hours.

  1. Improved Thermal Performance

Etching provides improved thermal performance compared to other methods, as there is less material to absorb and dissipate heat.

  1. Improved Reliability

Etching produces reliable boards with better electrical properties and higher levels of performance.

However, the above benefits depend on the type of solution and the etching technique you are using.

Types Of Etching Techniques

PCB manufacturers use two major techniques to etch or remove unwanted conductive material, such as wet and dry etching. Let’s discuss them in detail.

What Is Wet Etching?

The wet etching technique involves a chemical solution and it is popular among manufacturers as it works fast. It involves different chemicals which vary from each other in terms of properties, such as solvent concentration, ambient, and gripping. Wet etching is further divided into soluble or alkaline etching and acidic etching.

Etching Using Alkaline: It involves a solvent to remove the extra surface material from the board. It needs care as you have to check that the chemical has the right specification. Leaving the chemical on the board for longer can damage it, so watch the duration.

You should also consider other things during alkaline etching, like the quantity of the material to be etched, the spritz, and the nature of the layer. You can have an excellent etching by considering these elements. It involves different solvents, including chloride copper, hydrogen peroxide, water, and hydrochloride. It works fast which makes it an expensive process.

Etching Using Acid: As the name shows it involves acid, however, the main purpose of this method is to etch the inner layer. It is ideal for a rigid circuit board and costs less than alkaline etching. Manufacturers use either ferric chloride or citric chloride for acidic etching. However, it is a time-consuming process compared to others.

What Is Dry Etching In PCB?

The dry etching of circuit boards involves machines for removing copper and its residues. You can also call it plasma etching according to experts. Dry etching is not as hectic as wet etching, and it is suitable for the high-volume production of circuit boards. You don’t need a lot of effort while removing the waste material as it goes to the airspace, giving you a clean surface to work with.

Popular Etching Solutions

You have to choose an etching solution carefully because it’s often poisonous as its vapors can damage the metallic parts in a PCB. Below, we will discuss some safe solutions in this regard.

Sodium Persulfate: It is a combination of acid and water, and its clear color helps monitor etching during the entire process. Though it is more costly than other solutions, it is compatible with the resist tool. Remember that sodium persulfate is combustible which makes it toxic to the surroundings.

Ferric Chloride: It is a combative solution that can remove a tough material during etching. Ferric chloride is cost-effective and its rustic tone covers the etched residue. It has a blotting property and blots the parts that it touches.

Cupric Chloride: It is also known as inanimate copper chloride and has a dusty yellow tone. Cupric chloride is not combustible and can damage aluminum due to its acidic effect. When you heat it in a fire, it will produce gas, like hydrogen chloride. It helps have hydrogen peroxide during depletion.

Ammonium Persulphate: You can use ammonium persulphate in a tin-resistant method as it helps have visibility. Moreover, it is not very combative and involves high temperatures. It creates toxic vapors and can turn into nitrogen and sulfur during metal decaying which causes ignition.

Benefits of High-Quality Etching

Different devices involve different etching techniques, such as smart devices involving reactive ion and additive methods. Similarly, the same technique is applied to the computer motherboards’ etching. This method got popular due to the Apple Company, and the latest devices need high-end etching as they are multilayered. The applications with thin copper need high-quality etching, including reactive ions and additives.

The mSAP process helps develop compact motherboards for smartphones that helps engineers insert a large battery with a longer life. Today’s PCB design have small traces, like up to 30 microns, which might reach 10 microns in the future.

Other than smartphones, high-quality etching is getting essential for medical equipment and devices, automotive, wearable, and aerospace industries. It can help manufacturers use a six-layer PCB having single or double lamination. Right now, the 10-layer HDI PCB having 4 cycles of lamination is in practice.

HDI PCBs are used in aerospace and military applications that involve fine lines, firm pinouts, and small vias. Such applications also involve PCB stack-ups just like smartphones, and manufacturers try to reduce the layer counts and the number of laminates by adding the layers through mSAP and SAP techniques where subtractive etching goes well.

High-quality etching is also essential for wearable as they are thin, lightweight, and flexible. Printed circuit boards used in medical plants have 20-micron traces with a double-sided design having gold conductors that provide biocompatibility.

Frequently Asked Questions

Why is PCB Etching Important?

PCB etching is essential as it removes unwanted copper from the board and creates the desired circuit patterns.

What Are Popular Etching Techniques?

PCB manufacturers use two major techniques to etch or remove unwanted conductive material, such as wet and dry etching.

Which Solutions Help In Etching?

Some common PCB etching solutions are Sodium Persulfate, Ferric Chloride, Cupric Chloride, and Ammonium Persulphate.

What Is High-Quality Etching?

The latest devices are compact and delicate and need high-quality etching in PCB. HDI PCBs used in aerospace and military applications that involve fine lines, and firm pinouts, need high-quality etching.

Wrap Up

Etching is an important step in the PCB manufacturing process. PCB manufacturers use etching to remove unwanted copper from the board and create the desired circuit patterns. This process is also known as photolithography, and it requires a special etching solution and a masking material to accurately etch the board.

Etching is an efficient and cost-effective method of creating the desired copper traces on the PCB, and it is also very accurate and quick. Various solutions and etching techniques are there in the PCB market.

Would like to know more about the Etching process in PCB or prototype pcb manufacturer? Email us at sales@pnconline.com