Tag Archives: pcb assembly services

Physical and Electrical Partitioning In PCB Design

Physical and Electrical Partitioning In PCB Design

Partitioning your design into physical and electrical sections can significantly reduce the number of through-holes you need in your PCB, thereby increasing production speed and cutting down on manufacturing costs. Here, we will explain what physical and electrical partitioning are how they are used in PCB design, and how to create effective partitioning schemes in your PCB designs.
As you work on your next PCB design, you may be wondering how to implement physical and electrical partitioning in your design. These two factors are equally important to making the finished product successful, and both have a huge impact on the success of your design project as a whole. Stay with us if you’re looking to save time and money while producing high-quality products, read on!

Layout Considerations

When you’re laying out a Printed Circuit Board, you have two different considerations, such as physical, which is how your components are laid out on your printed circuit board; and electrical, which has to do with where you’re going to put all of your wires. These two can be grouped when it comes time for assembly.
For example, if you plan to use surface-mount parts that require soldering instead of wire-wrapping, then you will want to make sure that there is enough space between these parts so that they can be easily soldered onto your PCB. If you don’t leave enough space between them, then there won’t be room for solder paste. The solder paste is a sticky substance used to hold down SMT parts during pcb assembly.
This makes soldering difficult or impossible and the same logic applies to wiring. If you don’t leave enough space between components, then your wires may not fit without being bent too much or getting in each other’s way. This can cause problems when it comes time to solder everything together, as well as with heat dissipation, and too many wires crammed into one area might block airflow and cause overheating issues.
On top of that, you also need to consider things like trace width and spacing. Trace width refers to how wide your traces are (the lines connecting individual pads on your PCB), while trace spacing refers to how far apart they are from each other. Trace width should always be smaller than trace spacing because having wider traces means more copper is needed per unit length which means higher cost and greater weight.
Traces are usually made using either a single solid line or multiple lines connected by vias. Single solid lines tend to be faster but less reliable than multiple lines connected by vias, but they’re also easier to design and cheaper. Vias are holes drilled through layers of material that allow traces on different layers to connect.However, vias increase complexity and cost. There are several tools available to help designers create their circuits. Some free software options include EagleCAD, Kicad, Altium Designer, and CAD. However, regardless of what software you choose to use, remember that layout is only half of the process.

Physical and Electrical Partitioning In PCB Design-Content Image
Physical and Electrical Partitioning In PCB Design-Content Image

Overlapping Impedance Nets & Ghost Nets

To create a circuit board with electrical & physical separation, you must insert impedance nets into your design. There are three different ways you can do that, including overlapping impedances, creating ghosts, or through a virtual ground plane. In some designs, more than one method is used. So, let’s see how and when to use them.

An overlapping impedance net has part of it on one side of a barrier, and part of it on another side. A ghost net is used when you have two nets that need to be separated but you don’t want them physically separated because they are too close together or because they are too important for each other. A ghost net is just a virtual representation of an actual physical connection that exists between two parts of your circuit board.

A good example of why you might use a ghost PC board net instead of separating your nets with some physical method is if you have 2 power supplies that need to share ground. They can share ground by having their grounds tied together through some kind of wire.But, since they’re both supplying power independently, we don’t want them tied directly together at all times, but only when there is a current going through either one or both supplies. So what do we do? We create a ghost ground plane where we tie their grounds together. This way, when none ofthe supplies is active, there’s no connection between them, and when either supply is active, there isa connection between them.

An electrical partitioning net does exactly what it sounds like. It partitions electrical signals from each other. In a design where you want to physically separate your nets, you can do that by creating an impedance plane that separates them. But, then how do you keep them electrically isolated? That’s where a physical partitioning plane comes into play. This is just another name for a ghost ground plane, but instead of being used for sharing grounds between two supplies, it’s used for keeping two parts of your circuit board electrically isolated from each other while still allowing communication between them.

One last thing about these three methods is thatyou can’t use one without using at least one of the others. If you have a wall between two sections of your circuit board, there has to be some way for those sections to talk to each other. Otherwise, they wouldn’t be able to pass power or data. So, if you have a wall, you need ghosts or an impedance plane on both sides of it. And if you have ghosts, there needs to be a wall somewhere too.

Why Would You Ever Choose One Method Over Another?

Well, overlapping impedances are good when you don’t need high-frequency performance because they introduce more inductance than either of the other two methods. Ghosts are good when you don’t care as much about electromagnetic interference or EMI because they don’t create as much capacitance as either of the other two methods.

Whereas the physical partitioning nets are good when you want to keep your layout compact or if you have a design that’s already laid out and you can’t change it, as having a wall between two sections of your board is going to require some rework if it doesn’t already exist.
So, you need to decide if you want your partitions at a high frequency or low frequency. For a high-frequency circuit board, you’ll need to use overlapping impedances or ghosts; for a low-frequency circuit board, you can just go with physical partitioning nets.

Solving Unplanned Overlaps

It’s not uncommon for two different circuit boards or two different designs within a single board to overlap. Unplanned overlaps are hard to solve, but these tips will help you create better schematics so that you can avoid them.
Before you design your next PCB, make sure you follow all of these guidelines for PC Board Fabrication. By doing so, you’ll be able to identify overlaps before they occur and reduce your chances of creating any issues when manufacturing your product.
If you don’t have access to specialized tools or software, consider using some online tools like Google Sketch Up to help with your schematic design. These free programs allow you to build 3D models of your circuits, as well as export them into other applications like Eagle CAD or Altium Designer. This allows you to easily view how your components will fit together on a printed circuit board.
You should also use both software and hardware layout techniques to ensure that there aren’t any unplanned overlaps between your PCBs. While it may seem easier to just use one method, it’s important to understand how each technique works so that you can spot potential problems early on. For example, if you only use software-based layout techniques, then you might miss physical overlaps that would prevent a component from fitting onto your board.
Similarly, if you only rely on hardware-based methods, then you might overlook electrical conflicts that could lead to shorts or failures during testing. The best way to get around these kinds of issues is by using both types of layouts simultaneously. You can use a program like Altium Designer to lay out your circuit board, then print out an image of what you’ve created. Then take that printed image and place it over your actual PCB. This ensures that you catch any unplanned overlaps before they cause problems later on down the line.
Just remember, even though it takes more time upfront, double-checking everything twice is always worth it. With that said, there are still times when the overlap errors do slip through. When you find yourself in a situation where you need to resolve an issue like this, we recommend you double-check it. As it would become much easier to fix an error than it would be otherwise. You can also get professional help in this regard.
Would like to know more about physical and electrical partitioning in your designs or pcb assembly services? Write us at sales@pnconline.com

Tips for RF PCB Design

Tips for RF PCB Design

With so many things to consider when designing an RF PCB, it can be hard to know where to start. How do you choose the right layout? What tools should you use to get the job done? RF PCB design has its own set of challenges that need to be addressed to get the most out of your circuit. There are some best practices you can use to ensure that your design will function optimally and run smoothly.
The best PCB design solution can be the difference between success and failure for your product, so you want to make sure that you are getting it right the first time around. Our guide will walk you through all of the steps necessary to create an RF design that works and that makes your product even better than you envisioned.

Tips for RF PCB Design
Tips for RF PCB Design

Surface Mount Capacitors

Use surface mount capacitors when space is limited. You can incorporate them into your RF Printed Circuit Board design with no impact on performance. Try to keep track of how much space they’ll take and make sure there’s still enough room for other components on the board, like resistors and coils. The surface mount parts are more fragile than through-hole components and require an extra level of care when handling.
Consider using larger surface mount parts wherever possible, or incorporating test points into any sensitive areas if smaller parts are required. Remember that small surface-mount parts have very thin leads that could break off easily. Make sure you know what size of solder tip will be needed before moving forward with your design. If it’s too small, it could damage the delicate leads on these devices. It may also be difficult to attach them to boards after soldering as their leads are so small that they tend to slide around during assembly. When in doubt, use a slightly larger part.

Differential Pair Transformer Coupling

Choosing proper circuit components is an important part of designing and building circuits. When creating transmitter/receiver pairs, several factors influence how well each device will perform. The goal of any transmitter or receiver circuit is to accurately convert an input voltage into an output voltage with minimal noise and distortion.
These parameters are known as gain, linearity, bandwidth, noise figure, NF, return loss, RL, and intercept point, IP. A low NF results in more power being transferred from input to output. The IP value represents how much power can be handled by the front end of a given device before distorting or saturating it, all while maintaining its linearity characteristics.
In other words, if a device has high gain but poor linearity, then it may still have acceptable levels of IP. But if a device has high gain and poor linearity at lower power levels, then it won’t have good IP numbers. In general, devices with higher gains have lower bandwidths, however, there are exceptions to every rule. For example, some amplifiers have very high gains but also operate over wide frequency ranges.

Microstrip Transmission Lines

These are transmission lines in which all of their circuit elements, including those forming half-space planes, and terminations, such as capacitors and transformers, are fabricated on metal strip circuits. The strip circuit is usually etched onto an epoxy substrate using photo etching or electroplating techniques. The micro-strip designs have become very popular for many PC BOARD applications because they can be packaged in small cases with relative ease due to their thin profile. They also have good impedance matching properties over a wide frequency range.

Reference Planes, Power Planes & Ground Planes

Radio-frequency circuit boards or RF designs are often more sensitive to ground loops and signal integrity issues than regular designs because RF circuits and components are particularly susceptible to noise. One way that experienced designers combat these types of issues is by strategically adding power planes, reference planes, and ground planes to their board layouts.
Reference planes: The reference or signal planes can allow designers to focus on specific sections of a circuit without having to worry about interfering signals from other portions.
They also provide a convenient place for designers to add vias between layers of copper, which helps improve both signal quality and thermal performance. Reference planes can be especially useful when they’re directly connected to a component’s ground pin, which allows them to act as an extension of that component’s ground plane.
Power planes: they should always be connected directly to an external source of power, otherwise, they could cause voltage drops across adjacent traces and components.
Ground planes: They should always be connected directly to an external source of the earth, otherwise, they could cause the voltage rises across adjacent traces and components. It’s important to note that many high-speed applications use multiple ground planes at different potentials, so it may not be feasible to have just one global ground plane. However, it’s generally best practice to keep each section within a single board connected through at least one shared global ground plane.
By using separate grounds for different sections of a design, designers can avoid parasitic effects and increase the overall reliability by ensuring all parts of their designs have access to low impedance paths back to an external earth point.
In addition, it’s crucial to ensure that any ground or power planes are spaced far enough away from any active circuitry in order to minimize crosstalk. Generally speaking, there should be at least 1/10th of a millimeter between active circuitry and any nearby reference or power planes. The distance requirements become even more stringent with higher frequencies. When operating above 30 GHz, there should ideally be no less than 0.3 mm of separation between any ground or power plane and active circuitry.

Vias – Size, Shape & Placement

Vias are required in order for us to make electrical contact with traces on different layers. There are three types of vias, including plated through, blind, and buried. A plated through via connects one layer’s copper trace directly with another via’s copper trace or traces. A blind via creates electrical contact but no physical connection between two layers and a buried via provides both an electrical and physical connection.
Placement is generally determined by where it will be soldered or how many layers are involved. For example, if there are four or more layers involved then we recommend using plated through vias because they offer better conductivity than a blind via. If there are only two layers involved then we recommend using either type of visa, depending on its location relative to other components.
As far as shape goes, choose from square, round, or rectangular options that match your pcb fabrication layout requirements. Circular vias may also be available upon request, however, these have a higher cost associated with them due to their complexity and are not always necessary. We use wire-bondable vias wherever possible because they provide a faster assembly process. The above diagram illustrates each type of via along with its respective shape and size.

Isolating an RF trace

It is essential to isolate an RF trace from high-speed signals, including HDMI, USB differential pairs, or crystals’ clock traces. Experts do it through a method known as via stitching where vias are stitched around the RF traces to keep them away from other parts on the circuit board. But, there should be proper isolation as improper isolation can affect PCB function.

RF Circuit Board Insulation

Insulation is one of the most important factors for minimizing the signal loss in an RF transmission. If you want to ensure that your signal reaches its destination without any hiccups or interference, it’s crucial that you use good quality material for your board’s insulation, and choose one with at least 5-mil thickness.
One of our favorite options is Taconic TFEP as it offers superior heat resistance and can withstand temperatures as high as 350 degrees Celsius. It also has great mechanical properties and will last for years to come. Another great option is Rogers, which boasts similar properties but has a slightly higher temperature resistance.
You’ll also want to make sure that you’re using a good adhesive when attaching components to your board. This will ensure that everything stays intact even in tough conditions. If you want to ensure that your signal reaches its destination without any hiccups or interference, it’s crucial that you use a good, quality material for your board’s insulation.
You can create a flawless RF circuit board by considering all the above design guidelines.

Final Thoughts

RF PCB design has its own set of challenges that need to be addressed in order to get the most out of your circuit. There are some best practices you can use to ensure that your design will function optimally and run smoothly. You have to consider material, traces, surface mount capacitors, isolation, insulation, reference, ground, and power planes, vias size and shape, coupling, and micro-strip transmission line.
Would like to know more about RF design or pcb assembly services? Email us at sales@pnconline.com

PCB Design, Planning, and Components Selection in Printed Circuit Boards

PCB Design, Planning, and Components Selection in Printed Circuit Boards

Designing a printed circuit board or PCB can become challenging because there are many factors to consider, including environmental conditions the PCB will be exposed to and the desired electrical components that the PCB will use. The best design, planning, and component selection bring the best-printed circuit boards. All electronic products contain printed circuit boards so considering the above elements is essential that we will discuss these elements in this article.

Questions Regarding PCB Planning?

A few questions to keep in mind when designing and planning a PCB include:

  • How many layers do I want?
  • What thickness of copper foil/laminate do I want?
  • Do I want to use plated through holes or non-plated through holes?
  • Do I want my board to be double-sided, single-sided, or multilayer?
  • Are all of my components going to be surface mount or through-hole?
  • Are all of my connections going to be made using jumpers or solder pads?
  • Can I get away with using cheaper non-plated through holes instead of plated ones? Can I get away with not having a ground plane layer if all my signals are digital logic levels?
  • Does my design require low-noise analog filtering?
  • Will I need to isolate high-voltage circuitry from low-voltage circuitry, and high-speed circuitry from slow-speed circuitry?

You can start designing a PCB after getting answers to the above questions.

PCDesign: Basic Guidelines

Before you even begin to design your printed circuit board, make sure you understand some basics of PCB design. When designing a Printed Circuit Board several things should be considered. Keep in mind that most errors caused by circuit boards are usually associated with improper grounding and power distribution.
If you are trying to create a custom PCB or just update an existing board, it is important to consider whether it will be surface mounted or through-hole mounted.
Size: The size of your circuit board will also play a big role to see how much space you have for components. You can either choose to go with a larger board and have less room for components or vice versa.
Layers: The number of layers in your circuit board also plays an important role to see how many components you can fit into one area. There are three basic types of circuit boards, such as single-sided, double-sided, and multi-layer. Single-sided circuits only have traces on one side while double-sided circuits have traces on both sides of a sheet of material called laminate. Multi-layer circuits consist of multiple layers stacked together which increases current capacity.
It is important to know what type of circuit board you will need before starting any design work because it may require special tools or materials that aren’t available at home orin local electronics stores.

PCB Design, Planning, and Components Selection in Printed Circuit Boards
PCB Design, Planning, and Components Selection in Printed Circuit Boards

PCB Layout Techniques

While surface-mount technology dominates today’s electronics designs, you still may need to design or repair an older circuit that uses through-hole components. Whatever your reason is for dealing with through-hole components, there are several layout techniques you should be aware of to ensure reliable operation.
Many PCB layout problems stem from poor component placement rather than PCB material defects. By following these best practices when laying out a PC BOARD using through-hole components, you can help avoid these common mistakes If possible.

  • Place resistors before capacitors on each side of a power supply line. This way, if any capacitor fails, it will not causedamage to the resistors placed after it.
  • Place decoupling capacitors close to the chip they are used for decoupling. For example, if you have a microcontroller with two crystal oscillators, place one cap near each oscillator and connect them at opposite corners of their respective pads.
  • Placing both caps near only one oscillator would increase the parasitic inductance between those two connections, reducing efficiency.
  • Don’t place any other traces within 0.5mm of a signal trace running parallel to another signal trace on different layers. Signal traces running parallel are said to be coupled and can pick up noise from each other due to electromagnetic induction caused by nearby power or ground planes.
  • Try to keep traces spaced away from each other by 1mm or more if possible. If you must cross a signal trace over another signal trace, do so at right angles and use wide traces to reduce coupling.
  • When placing multiple closely-spaced power/ground pins on a single side of a DIP package, leave enough room between pins for solder mask relief cuts. Otherwise, you could end up with a solder mask bridging across adjacent pins when you remove your stencil during soldering operations.
  • Never put a hole in a signal trace and even small holes can cause shorts to the surrounding traces and components, especially if you don’t seal them off with liquid electrical tape or conformal coating. Similarly, don’t drill holes in the ground or power plane areas because those holes could become filled with solder during soldering operations.
  • Drill larger holes for mounting standoffs instead of smaller ones for mounting screws to save time and improve manufacturability.
  • Keep in mind that you may want to place components on a PCB around a standoff if you plan to solder wires or connectors directly to it. Always use solid core wire for power and ground traces. Stranded wire has too much resistance and tends to break easily under repeated flexing.
  • Keep track of your trace lengths to make sure none are longer than 2-3 times their widths. Longer traces can affect signal integrity and lead to intermittent failures in your final product.
  • When possible, use a ground plane layer to provide a return path for your power and ground traces. Power and ground planes also act as heat sinks, helping to dissipate heat from your components.
  • If you can’t use a separate ground plane layer for some reason, try to place as many of your signal traces on that layer as possible. That way, if one trace causes a problem with another trace or component, it won’t affect any other traces running on that layer.

Components Selection for Printed Circuit Boards

Deciding what components to choose when designing printed circuit boards is an important process that affects your final product. These electronic components come in many shapes and sizes, with different specifications for power consumption, weight, and other factors.

Knowing how to choose your components efficiently can prevent expensive mistakes down the line. This guide will help you understand how to select components for your PCB design effectively.

A printed circuit board contains conductive tracks made from metal foil and a conducting adhesive, typically etched into a thin layer of non-conductive material such as fiberglass or epoxy resin. Components are then placed on these tracks at specific points called pads, which are connected by copper traces forming circuits.
The PCB is usually used to connect electronic components like resistors, capacitors, transistors, and diodes with each other to form an electrical circuit. The most common materials used for PCBs are FR4 (fiberglass) and G10 (FR4 glass laminate). Other materials include CEM-1 (glass epoxy), Rogers 4003 (aluminum), Rogers 4350 (aluminum), and PTFE-based laminates.

The Purpose of Design

When designing printed circuit boards, many factors need to be considered and you can split them into two categories, such as functional requirements and design constraints.
The functional requirements describe what your printed circuit board needs to do, while design constraints determine how it will be designed. For example, if you want your product to have a battery life of more than five hours you need to consider things like battery size and power consumption when designing your product.
Functional Requirements
Four main functional requirements must be met when designing printed circuit boards, such as performance, reliability, serviceability, and cost.
Performance refers to how well your product performs its intended task.
Reliability means that your product should work correctly all of the time without fail.
Serviceability means that it should be easy to repair any problems with your product once they occur.
Cost refers to whether or not you can produce your final product for a reasonable price.
These requirements may change depending on who your target market is. If you are targeting high-end consumers, reliability and serviceability might take priority over cost. On the other hand, if you are targeting low-income customers in developing countries, affordability might take priority over everything else.

Connectors for Printed Circuit Boards

Solderless connectors are used to connect different electronic components on a printed circuit board. They’re available in two categories, such as through-hole and surface mount.
These connectors can also be classified by their location on a PCB, such as an edge-mounted or through-hole mounted. The primary difference between these two is the size.

Edge-mounted connectors are smaller than through-hole ones because they don’t have as much copper around them. This makes them better suited for smart devices having less space, such as cell phones and laptops. Whereas the through-hole mounted connectors are larger and easier to work with but require more space on a PCB.

Would like to know more about design, planning, and components selection in PCB or pcb assembly services? Write us at sales@pnconline.com

PCB Design

DFM Issues in PCB Design

You need a well-designed PCB for the effective functioning of the device, and you can have it by focusing on the DFM or Design for Manufacturing. Different requirements are there in terms of PCB design, management, and fabrication that you have to follow. At the same time, you should consider the timeline to have a circuit board within your budget.

PCB and DFM Issues

Having well-executed CAD tools is easy, but these tools cause certain DFM issues which need lots of effort to solve. Sometimes a PCB is correct in terms of electrical requirements, but it is hard to manufacture because you don’t focus on the design layout. The layout issues stay hidden, making it hard for you to assemble a PCB, besides the testing also becomes difficult.
However, you can overcome the DFM problems if you understand the entire process of manufacturing. Now, we will discuss a few DFM issues, including tolerances, acid traps, SMD issues like open vias and uneven connections, a wrong opening of the solder mask, and the violation of standards.
Once you know these problems, it becomes easier for you to resolve them and have an easy fabrication that involves less time to review the design. So, let’s discuss the DFM issues one by one and find their solutions to have the best device.

Connection Issues On The SMD Pads

The connections on the SMD pads often become uneven as components are so small and hard to handle. These connections should be even to avoid the tombstoning while soldering reflow. Likewise, this rule also applies to the BGA pads for precise soldering. In other words, you should place a compatible pad according to the footprints of the components, so the size of the pad matters a lot. Generally, the pad sizes are standard for common components.
The designer can easily check the pad sizes without exporting the Gerber files, like through a 3D, as the manufacturer won’t do this for you. Manufacturers only see the Gerber files to compare the sizes of the components’ in the BOQ.
You also need testing after PCB fabrication to make sure that the connection is even and it involves deep inspection like an X-ray. So, the designer should inspect the footprints to see if they are according to the lead size of the component.

A Wrong Solder Mask Opening

The term solder mask or solder aperture is an opening that helps the solder stay intact on the SMD pads while soldering, be it the wave or hand soldering. A solder ball develops on the pad while soldering which can collapse if it’s too large, moving around at high temperatures. Designers leave a small opening in the solder mask to keep the solder ball intact while soldering, even if the ball is too large. This technique also works in the BGA where a solder dam develops when the mask hinders the pad from circuit board’s via.
You can eliminate this issue by creating the footprints of the components having a proper solder mask opening which often crosses the pad edges about 4 to 5 mils. When the solder aperture is very large, it is not able to block the flow of a solder ball while wave soldering.

Open Via Issues In The SMD Pad

The designer should not give via-in-pad in the PCB. When you place a through-hole via very near to the soldering area, it causes the solder to move through a circuit board’s back. When via is attached to the internal layer’s large plane, it will cause the heat dissipation into that plane. So, it results in tombstoning during pcb assembly.
Though the via-in-pad has a great role in the HDI PCB having BGAs with a fine pitch, it should be avoided in smart circuit boards. You should insert plated-over vias for small boards to avoid the heat dissipation that occurs during soldering and also makes via the connection for thermal relief.

PCB Design
DFM Issues in PCB Design

Understanding the Acid Traps

Printed circuit boards consist of various copper images. Engineers remove extra copper from the laminate with the help of chemicals that sometimes get trapped in a PCB with narrow corners, and this is called an acid trap. This process results in rough copper, damaging the PCB.

There is a way to avoid the acid traps by using low-viscosity chemicals. Acid traps also happen when the routing is done at 90 degrees, so beware of the solution that a PCB manufacturer uses, in this case, to see if it is causing acid traps. The best practice is to route the traces at 45 degrees to avoid the acid traps.

Design Tolerances

PCB design depends on precise parameters and tolerances and you have to maintain them. If you don’t use specific design requirements, the routing tools will create any tolerance. You should keep traces at some distance from other traces, from pads, and from the copper pours. The clearances help in etching and leave a space for manufacturing clearances.
These tolerances are also essential in high voltage layouts. According to the IPC 2221 standards, the difference between conductive elements determines the minimum clearance between the conductor and a trace. The purpose is to avoid the unintended ESD or, conductive filamentation in the case of adjacent conductors, and electrochemical corrosion.

IPC Standards and Their Violation

There are unlimited IPC standards that you have to follow for a reliable PCB. Such standards are regarding tolerances, the annular ring size of the via as per aspect ratio, teardrops on vias and pads, land patterns, sizes of micro vias, trace width as per current, and high temperatures.
Some manufacturers check the Gerber files and testing rules to see if you have violated any standards. Generally, the IPC standards are not mandatory, unlike high-end industries, but following them makes a Printed Circuit Board more reliable.

Accessing The DFM Issues Through PCB Design Software

The above DFM issues are the common ones in PCB manufacturing, but there are several other issues. If you manage all the design rules, you and your manufacturer would end up with a reliable PCB. You need the right software to create a rules-based PCB, avoiding the DFM issues.

Frequently Asked Questions

What Is DFM In A PCB?
DFM is Design for Manufacturing which means you have to have a special layout design for a PCB to be manufactured correctly. You will have to face many issues if there is no DFM.
How to Check the DFM Issues?
There are certain PCB testing tools to check the data set, finding issues that can delay the manufacturing. Many online platforms also offer DFM testing tools.
What is SMD in a PCB Design?
SMD stands for Surface Mount Device, and SMD components are parts being soldered to the PCB by using the surface mount technique. There are several types of SMD components having different forms.
What is BGA in a PCB Design?
BGA means a ball grid array, and it’s a surface mount technique for integrated circuits. It helps mount devices permanently, like in microprocessors.
What are PCB Tolerances?
PCB design depends on precise parameters and tolerances, and you have to maintain them. If you don’t use the specific design requirements, the routing tools will create any tolerance. You should keep traces at some distance from other traces, from pads, and from the copper pours. The clearances help in etching and leave a space for manufacturing clearances.
What Are IPC Standards in PCB?
There are unlimited IPC standards that you have to follow for a reliable PCB. Such standards are regarding tolerances, the annular ring size of the via as per aspect ratio, teardrops on vias and pads, land patterns, sizes of micro vias, trace width as per current, and high temperatures.

Final Thoughts

Having well-executed CAD tools is easy, but these tools cause certain DFM issues which need lots of effort to solve. Sometimes a PCB is correct in terms of electrical requirements, but it is hard to manufacture because you don’t focus on the design layout. The layout issues stay hidden, making it hard for you to assemble a PCB, besides the testing also becomes difficult.
However, you can overcome the DFM problems if you understand the entire process of manufacturing. Now, we will discuss a few DFM issues, including tolerances, acid traps, SMD issues like open vias and uneven connections, a wrong opening of the solder mask, and the violation of standards.
There are several DFM issues, and if you manage all the design rules, you and your manufacturer would end up with a reliable PCB. You need the right software to create a rules-based PCB, avoiding the DFM issues.
Contact us at sales@pnconline.com to know more about DFM issues or pcb assembly services.

High-Frequency PC Board

High-Frequency PC Board Applications, Specifications, and Challenges

Some electronic products need special signals for which you have to make a high-frequency PC Board. Such a circuit board can provide 500 MHz to 2 GHz frequency that is ideal for microwaves, a radio frequency, and certain mobile applications that involve high-speed designs.

Several electronic components and switches are complex and need to transfer signals at a fast speed which is provided by high-frequency PCBs. Such boards need special materials because ordinary materials can affect signal transmission due to a poor Er value. Designers have to consider certain factors while designing the high-frequency Printed Circuit Board that we will discuss below.

Understanding a High-Frequency PCB

PCB involves connections of different components through conductive paths to run a specific electronic item. Designers use copper to develop a conductive path in a PCB. Circuit boards also help in signal transmission in the case of Wi-Fi and other satellite systems. In other words, you need a high-frequency circuit board to connect multiple objects through signals.

High-Frequency PC Board
High-Frequency PC Board Applications, Specifications, and Challenges

Which Factors Affect The High-Frequency PCB?

The design of a high-frequency PCB is not that easy because certain factors influence it and you have to consider them. Such boards have complex fabrication due to high-frequency laminates. Besides, the circuit board has to manage different applications’ thermal heat transfer.
You can’t use any material for high-frequency PCBs because it influences signal transmission that can be fast or slow, depending on the material. Moreover, the change in a material’s Er value also affects a PCB’s impedance.
Similarly, the dielectric material also plays a role in the design of high-frequency boards. Manufacturers use different dielectric materials as mentioned below:
1. Roger’s
2. Teflon
3. FR4.
The Roger’s is not expensive, and its DF and DK values are also less than other materials. Besides, it is ideal for prototyping manufacturing and applications. Moreover, there is a minimum chance of signal loss due to this material.
Whereas Teflon is used due to its high frequency that is up to 5 GHz that enhances the speed of signals between different parts and objects.
On the other hand, the FR4 is ideal for RF applications that need a frequency from 1GHz to 10 GHz. But, the electric products having FR4 have certain drawbacks due to their limitations.
The best material for high-frequency PCBs is Teflon due to factors like water absorption, DK, and DF. Teflon is more expensive than other materials, but it is ideal for products that need more than 10 GHz frequency of signals.
What Are The Standard Specifications Of a High-Frequency PCB?
You have to consider certain materials to have a high-frequency board as mentioned above. Moreover, the change in a material’s Er value also affects a PCB’s impedance. PCBs are available in different frequencies and have certain specifications that we will discuss below.
PCB Size: It should be at least 6 mm x 6 mm, and can go up to 457 mm x 610 mm.
PCB Thickness: It ranges from 4 mm to 5 mm.
Type of Material. Generally, it should be RO4003C, Ro3003, RT5880, and Ro3010
Weight of Copper: It ranges from 0.5 oz. to 2 oz.
PP: It includes Domestic-25FR, Domestic-6700, and Roger’s 4450F.
Min Spacing: It should be at least 3 mils.
Solder Mask Colors: Some common colors, in this case, are yellow, red, white, green, and blue.
Sides of Solder Mask. They are according to the design files.
Silkscreen Colors and Size: The colors are mostly white, black, and yellow, whereas the sides are according to the files.
Impedance Clearance: It is either plus 10% or minus 10%, depending on the design.
High-Frequency PCB Finish: It can be immersion tin, gold, silver, or electroless nickel. All these finishes should be RoHS certified.
Annular Ring: It should be min 4 mil.
Diameter of Drilling Hole: It is a minimum of 6 mils.

All the above species are standard and may change according to the board design. Besides, most circuit boards are customized and designed according to your needs. It is hard to recognize the best high-frequency circuit board, however, the material and specifications can help you in this case. You can also get professional help from a qualified PCB designer and/or a circuit board manufacturer.

Top Tips To Develop The Best High-Frequency PCB

As you know high-frequency PCBs have a high density and integration than other PCBs, they need a thoughtful design and fabrication. Such boards are more scientific than traditional circuit boards, and we have some tips to help you create a reliable PCB.

1. The pins that exist between various layers of a high-frequency PCB should have minimal leads as an alternate. Besides, the lead between different pins should be small.
2. When it comes to high-frequency devices, there should not be more bends between their pins.
3. Make sure that loops don’t develop while wiring.
4. The impedance of signals should be compatible.
5. The power pins of an integrated PCB should have a high-speed decoupling.

Meeting the Challenges of A High-Frequency PCB

No matter how well-designed is your high-frequency circuit board, you have to face some challenges during its fabrication and assembly. Let’s discuss some common issues in this case.

Consider Scaling

A professional fabricator knows that the thickness of internal layers decreases during the lamination of a multi-layered PCB made if FR4. So, the manufacturer should evaluate the percentage of such a loss. This helps printed circuit boards manufacturers get the right dimensions after the lamination process is over.
Besides, the laminate material is not hard like FR4, so it reacts differently. You should know the behavior of each material. Besides, you should scale each thickness separately or it will affect the registration from drill to pad and layer to layer. The fabricator should know all the statistics in this regard.

Preparing Different Layers

A board with several layers is complex, as you have to prepare each layer to have a strong bond, especially in the case of Teflon. Soft material can get deformed during the aggressive preparation of a surface. Such a deformation results in wrong registration, turning a PCB into a scrap.
Replacing the Teflon becomes expensive and causes delays in fabrication. So, you must prepare the surfaces carefully to avoid such challenges.

Preparation of Holes

You need to prepare the hole before plating. Like, it should be free from debris or epoxy attached to its walls. A smooth surface helps have a well intact copper plating. However, ceramic or Teflon involves a different kind of hole preparation.
This process involves a lot of care like you should consider various parameters of the drill machine to avoid the smearing of the substrate. After drilling, the hole is treated through plasma that involves gases. Poor preparation of the hole before copper plating might result in poor signal transmission. Hence, a PCB should have clean holes to perform better.

Considering the CTE Rate

The designer also has to consider the CTE or coefficient of thermal expansion of different materials. Different materials have different expansion rates, besides this expansion can occur in any direction like x, y, or z, depending on the heat. You can have well-finished holes if the CTE is less.
The factor of CTE can cause issues during a hybrid PCB of several layers when you join the high-frequency materials with FR4. So, the CTE of the materials should be compatible, or different layers or materials will expand differently, creating an issue.
Other than layers, vias also have to face this issue. Hence, the plugging material of the vias should be compatible with other materials.

Compatibility

Some FR laminates are similar to the RF materials in terms of behavior, and you should understand it. For example, the ceramic impregnated boards are hard when you drill through the drill bits. The hit counts should be less, besides, the RPM and spindle settings should be customized.
Sometimes the holes have fingers, which are hard to remove, so the adjustment of drilling parameters is essential to reduce fiber.
So, you can meet all the above challenges if you design and fabricate a PCB carefully by approaching a prototype pcb manufacturer to verify your design.

Importance of a High-Frequency PCB

A high-frequency PCB is widely used in different industries, such as military, interchanges, gadgets, vehicles, PC, instrumentation, clinical, and other such fields. These circuit boards are more in demand than before, and 15% of circuit boards in the market come up with high frequency.

Final Words

Sometimes the electronic components and switches are complex and need to transfer signals at a fast speed which is provided by high-frequency PCBs. Such boards need special materials because ordinary materials can affect signal transmission due to a poor Er value.
You can’t use any material for high-frequency PCBs because it influences signal transmission that can be fast or slow, depending on the material. Moreover, the change in a material’s Er value also affects a PCB’s impedance. PCBs are available in different frequencies and have certain specifications.
Would like to know more about high-frequency PCB applications or pcb assembly services? Email us at: sales@pnconline.com