Tag Archives: pc board assembly

Stencils for SMT Assembly

Stencils for SMT Assembly

A stencil mask is used in many manufacturing processes to make PCBs. This includes SMT stencils which are most commonly used in the process of making printed circuit boards. The use of these SMT assembly varies based on the size and complexity of the board that they will be used on and the type of assembly machine that will be using them.
For any SMT stencil application, solder paste should be used for paste dispensing. Advantages of using a stencil method are high yield rate, high accuracy, and repeatability, low labor cost, and good surface finish. The main disadvantage is that it is not suitable for mass production or high-mix low-volume assembly.

SMT Stencil Types

There are two types of stencils, including manual and automatic. Manual stencils are available in many materials, such as stainless steel, plastic, etc., while the automatic ones are made from silicon rubber material which has been pre-impregnated with the conductive paste by screen printing methods. Both manual and automatic stencils require cleaning after each use.

Cleaning Process

The cleaning of stencils can be either by hand washing with solvents or ultrasonic cleaning bath. If an ultrasonic cleaner is used, then the dry time must be taken into consideration before reusing a stencil again to avoid a short circuit caused by excess moisture on metalized pads.

When an ultrasonic cleaner is not available, the cleaning process should take place immediately after soldering to prevent a short circuit due to moisture trapped under soldered components. It is also important to ensure proper drying of a Printed Circuit Board before applying the stencil. This will help reduce contamination during the next round of the soldering process.

How To Choose The Right SMT Stencils For Your Project?

You have to consider many factors when choosing an SMT stencil, including material, thickness, complexity, size, durability, and cost. It’s important to do your research before ordering a stencil from a vendor.

Stencil Application In PCB Assembly Method

The solder paste should be applied to both sides of a printed circuit board with a stencil. After applying solder paste, components are placed on top of it. Soldering is done by passing an electric current through it. This will melt solder paste, allowing it to flow between pads on PCB and component leads. This process is known as reflow soldering.
There are two types of reflow soldering, including hot air reflow soldering, and infrared reflow soldering. The hot air reflow soldering uses heated air to heat a PCB and components, while infrared reflow soldering uses IR lamps or IR guns to heat a PCB and components.
Both methods can be used for stencil applications. However, the hot air reflow soldering can only be used if there is no need to change the position of components after they have been placed on PCB. If there is a need to change the position of components after they have been placed on a PCB, then infrared reflow soldering must be used instead.

Stencils for SMT Assembly
Stencils for SMT Assembly

What Types of Designs Work with SMT Stencils?

While most customers using stencil printers are familiar with traditional SMT stencils, it’s important to know that there are other types of SMT stencil designs. While each is suitable for certain circuit board and component types, not all of them work with on-demand printing, so there are other factors to consider.
Another consideration when choosing an SMT stencil printer is whether or not you plan to print a single part or multiple parts at once. Most on-demand printers allow users to print one part at a time, but if you need more than one per run, it’s important to find a machine that can handle high volume runs, as well as quick turnaround times. If speed is your top priority, look for a system that offers a fast setup and take-down times so you can get back to production quickly.
Finally, be sure to choose a printer that offers interchangeable nozzles so you have access to different tip sizes without having to buy new machines. For example, if you want to use larger components like QFP packages or BGA chips, you might want a larger nozzle size.
Similarly, smaller components will likely require a smaller nozzle size. This allows you to switch between jobs quickly and easily instead of waiting for replacement parts to arrive. Of course, you should also make sure that your printer supports all of these features before purchasing.

How to Avoid Overruns on a PCBA?

Overruns occur when you place too many components on a single layer of your PC BOARD. This problem can be easily avoided by using stencil masks to help guide where your components should go. While it’s possible to manually transfer the component placement onto a new layer, it’s much easier and more efficient to use stencil masks. These plastic sheets are placed over each hole and etched with a laser, creating an accurate pattern that allows for easy placement of components onto layers below. This process ensures that all your components are placed correctly, which will result in fewer problems once you begin assembling your PCBA.
When there is not enough space between components, they may short out or interfere with one another. Both scenarios will negatively impact performance and may even damage some parts entirely. To avoid these issues, make sure you always use stencil masks to ensure proper spacing.
Additionally, check any design files you received from your manufacturer before placing components; sometimes oversights occur during translation. If you find errors while working with stencil masks, don’t hesitate to reach out to a service provider who can offer additional assistance if needed.

What Are Some Common Mistakes Made When Using SMT Stencils?

A stencil is an important part of manufacturing printed circuit boards, and you should choose it with care. Here, we will discuss some common mistakes when using SMT stencils so you can avoid them on your next project.

Not Knowing How Your Stencil Is Manufactured: There are three ways that stencils are made, such as laser-cut, die-cut, and silkscreen. The first two are much more expensive than silk screening but they produce higher-quality results. Silk screening has been around for decades and allows people without special equipment to create professional-looking stencils that work well for mass production. However, they don’t last as long as other stencils.

Not Checking Your Board for Burrs before Using a Stencil: A burr is a small piece of metal leftover from cutting your board with a laser cutter or CNC machine. It can easily ruin your stencil and make it unusable. You should always check for burrs before using a stencil, and make sure you get rid of them by filing them down with an emery board or some other method if they are present.

Not Pressing the Stencil Firmly against PCB: If you don’t press firmly enough against your board when applying solder paste, there will be air pockets where components won’t be soldered properly. This may not seem like a big deal at a first glance, but it can cause issues later on that could cost you time and money. You should always make sure to press firmly against your stencil before starting to apply solder paste so you get high-quality results every time.

Using a Stencil That Is Too Small for Your Project: When using a stencil for SMT placement, it is important to choose one that is large enough for all of your components. If you try to use a stencil that is too small, you will end up with extra solder paste on your board and possibly even miss-placed components. You should always make sure you are using a stencil that has plenty of room for all of your parts so you don’t waste time or money trying to fix mistakes later on.

Not Cleaning the Board after Use: After you have finished soldering, you should clean off any excess solder paste from your board. If left on there too long, it can cause oxidation and other issues which could ruin both your board and stencil. You should always clean off your board after using a stencil to make sure you don’t run into problems later on.

Using A Stencil That Is Too Old: While they may seem like they last forever, SMT stencils do wear out over time. You should always make sure to replace them when they start showing signs of wear and tear. Signs that your stencil is worn out include warped edges or holes that are too large for your components. If you see these kinds of problems, it’s best to get a new one before continuing with your project so you don’t end up wasting money or having issues later on.
FAQs

Will My SMT Stencil Last Forever?

No matter which type of stencil you purchase, it won’t last forever. Eventually, all stencils will degrade and lose their effectiveness.

What Happens when an SMT Stencil Gets Damaged?

Damaged stencils pose a serious risk because they could cause solder paste to leak through and contaminate nearby components. This can result in costly repair work and even downtime for your production line.

How Do I Test My SMT Stencil to See If It’s Working Properly?

To test your stencil, you can use a device called a stencil tester. You can also get professional help in this case.
Would like to know more about SMT Stencils in PCB or PC Board assembly? Email us at sales@pnconline.com

Printed Circuit Board Routing Practices after Auto Routing

Printed Circuit Board Routing Practices after Auto Routing

In electronic design, PCB routing is the positioning of conductive pathways on a printed circuit board before final soldering and interconnection. The purpose of PCB routing is to have an arrangement where signal traces connect electrically to components and other signal traces while avoiding the signal crosstalk and maintaining short electrical paths between the components.
You can have a manual PCB through computer-aided design software or the use of specialized routing hardware, such as manually controlled routers or auto-routers.

How To Reset Your Board After Auto Routing

If you’ve used an auto-router, but you’re not happy with its results, you can fix it in different ways. Moreover, if you know what a DRC is, you can use it to override certain errors that auto-router made.
DRC means the Design Rule Check which you can perform by running an ERC or Error Report Check. The ERC will report all of your errors on your design file on a text file. It will then tell you how many errors are found in each layer.
You can then go into each layer and manually change any error that was reported by using the P-CAD’s drag function to move components around until they fit perfectly within their pads or tracks. This is also known as drag fitting.
When everything fits perfectly, save your design as a new version so that you don’t accidentally erase anything important. Once saved, run another DRC and see if it finds anything else wrong with your board layout. If not, continue with another step to check for shorts between traces/pads/vias/traces, etc.
After fixing these issues, perform another DRC again. Now that everything looks good, export your Gerber files. Make sure you select the top copper layer only and then hit OK. Your Gerber files should now be ready to send off for PC Board Fabrication.

How To Manage Multiple Copies Of The Same Net

In printed circuit boards, nets are electrical connections between different parts of a design. For example, if you have an LED that is connected to the ground and another net that connects to a microcontroller through various resistors, there will be two nets connecting these two components.
You need to route one copy of each net in your board file in order for it to be used in your design. Having too many copies can make it difficult to update or change an element of your circuit board design.
In case you have several copies of a net, they will all be shown in different colors. But, you should always try to join them together instead of having multiple copies. The PCB editor provides a Merge Nets option which can do that for you. To use it, just click on it in one of your nets and select another net for merging. You can do that with as many nets as needed. When finished, press OK and then Save Board to save your changes. You can easily learn it through various video tutorials available on the internet.

How to Manage Tight Spaces in PC BOARD Routing

The key to successfully routing a PCB with tight spaces is in visualizing what you’re doing. If you can see it, you can do it. Once you have a clear picture of your goal, there are several techniques to deal with PCB obstacles that make it possible to route those hard-to-reach traces. Here are some tips on managing tight spaces.

Place your components as close together as possible: This will leave plenty of room for routing at either end of each component lead.

Put components with shorter leads toward one side: This allows more space for routing on other sides, where longer leads might overlap.

Use right-angle headers instead of straight headers when possible: They’re easier to route around obstacles because they have a narrower footprint. If you can’t use the right-angle headers, place them closer to an edge than a corner.

Use large-pad ICs instead of small-pad ones when possible: Large pads make it easier to route around them without accidentally overlapping their neighbors.
Put components with longer leads toward one side: This allows more space for routing on other sides, where shorter leads might overlap.
Place through-hole components near an edge: This leaves plenty of room for routing on other sides, where smaller holes might overlap. It also makes it easier to access component pins from both sides.
Route clockwise around obstacles when possible: Clockwise routing tends to be smoother than the counterclockwise routing because it keeps your drill bit moving forward rather than backward.

Tips On Hard-To-Route Pins, Vias, Signals, Planes, And More

One of the biggest advantages of auto-routing tools is that they save you a ton of time by automatically planning out your board’s signal paths. Though these tools are very convenient to use, there are certain types of signal paths that can be very difficult for them to handle.
Here’s a quick rundown on some common hard-to-route signal paths and what to do about them, so you can make sure your PCB design doesn’t have any issues during production.
Multi-layer boards allow you to create more complex circuit layouts than would otherwise be possible with a single-layer PCB. But, when it comes down to it, most manufacturers prefer single-layer boards because they don’t cost much more and will typically get you faster turnaround times than multi-layer boards.
If you’re trying to decide between single-layer and multi-layer, here are a few things to keep in mind:
Multi-layer boards require additional fabrication steps. Though multi-layer boards do indeed allow for more routing options than their single-layer counterparts, they also require additional fabrication steps which increase the manufacturing costs. This means that unless you need those extra layers, it’s probably best to stick with a single-layer board.
The single-layer printed circuit boards can fit more components. This may seem like an obvious point, but when designing your layout, remember that multi-layer boards have smaller component pads and traces than their single-layer counterparts. Each layer adds another set of traces and pads. So, if you’re looking to fit more components onto your board, you should consider sticking with a single-layer PCB.
In other words, both multi-layer and single-layer PCBs have their pros and cons. So, if you aren’t sure whether or not you should use one over another, or if you simply want to play it safe, go ahead and choose a single layer board instead.

Printed Circuit Board Routing Practices after Auto Routing
Printed Circuit Board Routing Practices after Auto Routing

Avoid Over-Relying On Auto-Routing

Though auto-routing is a great help, you cannot over-rely on it. Besides, you have to select the right software for this purpose. There are lots of free software available on the internet which might or might not work well in this case, so choose carefully. You should have practice to route traces with any software that we will discuss further. Besides, there are different parameters of auto-routing that should be precise, however, they vary from project to project or between different modules on a single printed circuit board.

Top 5 Tips for Manually Routing A Circuit Board

There are different things to consider while manual routing on PCB, such as:
1. Keep your route sizes as consistent as possible: Having a fixed grid is highly beneficial when it comes to routing. You should lay out your design in a way that allows you to connect pin-to-pin with no more than 5 percent variation from expected routes. It ensures an optimal layout before starting any manual routing work.
2. Use proper start and endpoint selection: Starting a route at a pad or component lead not only wastes time but also affects a board’s signal integrity. To avoid these issues, always use endpoints or pins for start/endpoints whenever possible.
3. Avoid using vias for signal layers: Vias are used for connecting two different copper layers on a PCB, not for connecting two pads on one layer. If you need to connect two pins on one layer, consider using micro-vias instead of traditional vias.
4. Don’t overlap traces: Overlapping traces can cause different kinds of problems, such as ground loops and impedance mismatches. So, make sure you leave enough room between each trace for easy soldering and troubleshooting later on.
5. Focus on long-term flexibility: Once you have routed your board, think about how you might want to change it down the road. For example, will you ever want to add another connector? How about changing around some components? You may find that adding the solder mask artwork into your design software now will prevent you from lots of headaches later on.
Your ability to change the designs without having to reroute everything from scratch makes a huge difference in future productivity and costs. The best way to learn new skills is by doing new things, so don’t be afraid to take chances and be innovative.
You can develop the best PCB by focusing on different techniques and design parameters for which you can also read our other posts.
Would like to know more about PCB routing practices after autorouting or PC Board assembly? Email us at sales@pnconline.com

5 PCB Design Elements for Digital Transformation

5 PCB Design Elements for Digital Transformation

Digital transformation means many things to many people, but regardless of who you are or what you do, it’s important to have an understanding of the overall impact it has had on PCB design and manufacturing. In the past five years, our industry has seen the emergence of an entirely new manufacturing process that leverages advanced semiconductor technology and equipment to produce end products in remarkably faster and more efficient ways than ever before.
PCB design goes far beyond simply ensuring that the PCB has all of the right elements on it, it’s an extremely critical factor in whether or not the final product will succeed or fail in the marketplace. This article will discuss five of the most important features that you should always include in your Printed Circuit design to increase its chances of succeeding in the market.

1) Embedded Systems

The biggest issue with embedded systems is that since we’re using digital devices for sensing and control, we need to worry about electromagnetic interference or EMI from other devices. This requires not only shielding and grounding but also capacitors in series with any power or signal lines that may have high switching currents. In addition, it can require filtering on any data line to prevent noise issues.

In some cases, it might even require active components such as an EMI filter or optoisolator between two circuits that shouldn’t ever share a common ground potential. Though there are lots of things to consider when designing a new system, four key elements are essential when designing your next embedded system, such as

EMI Shielding and Grounding: since you are using digital components on your Printed Circuit Board, there is a risk of electromagnetic interference (EMI) that can interfere with signals and cause incorrect readings or even damage the sensitive components. To prevent these issues, it’s important to use shielding whenever possible and ground all your devices separately from one another.

Power Distribution: Since many devices will be drawing power from a single source, it’s important to make sure everything has its dedicated current path so nothing gets overloaded or damaged due to shared current paths between devices on your circuit board.

High-Speed Signals: If you plan to move data over any high-speed interfaces, then special care must be taken to design them properly. In addition to ensuring good grounding practices are used for optimal signal integrity, special care must also be taken with PCB trace widths, as well as keeping impedance levels low through proper trace length and material selection.

Sensors & Input Devices: With analog systems, sensors were often free since they could usually tap directly off of existing power lines. But, now that we’re dealing with digital systems, many sensors require either specialized voltage regulators or their separate supply rails altogether. Not only do they require their supply rail, but sometimes they might even require additional processing before being able to generate useful information for us.

2) Low-Power & High-Performance Computing

The more you can do with a limited amount of power, space, and money, the more valuable your product is to users. FPGAs (field-programmable gate arrays) are tools that let engineers reprogram individual chips in order to handle specific computing tasks. The result? Microcontrollers or CPUs that are faster and can process greater amounts of data than they would be able to otherwise.
If there’s one thing you know about digital transformation, it’s that speed is everything. If a chip takes too long to compute, then what’s being computed isn’t worth much anymore. By making microcontrollers perform like high-performance computers, FPGAs help drive down costs while also increasing the value for the end-users.
In addition to general processor performance enhancements, many people look at DSPs as a means of lowering power consumption in their products. DSPs excel at using less energy by processing the audio signals or video images through filters designed to cut out unnecessary information from signal processing circuits. They allow device manufacturers to keep devices running longer without having to worry about recharging them—and when these devices need charging, it takes less time because DSPs can run on lower voltages than processors traditionally used for signal processing applications.

5 PCB Design Elements for Digital Transformation
5 PCB Design Elements for Digital Transformation
3) Power Management

The management of power in electronics is very important, especially for mobile devices. Engineers now have to consider energy usage and battery capacity when designing PCBs for new devices. Consumers want smartphones that last all day, or they will move on to a different company.
Reducing power consumption can make a product more attractive to consumers. It’s important to choose high-quality power supplies because they determine how much current your components can draw from your system’s batteries. If you choose low-quality power supplies, you could damage your PC Board components and reduce their lifespan.
When selecting power supplies, look for products with higher output voltages. These provide better performance and allow you to use fewer components. Also, look for products with active PFC (power factor correction) circuitry to help save money by reducing your electricity bill. Also, be sure to select products with short circuit protection so they don’t get damaged if something goes wrong inside your system.
The analog-to-digital converters, or A/D converters, are a key component in most embedded systems. This type of converter converts the analog signals into digital signals so they can be processed by microcontrollers and other processors.

4) Sensor Technology

Reducing energy consumption during PCB operation is a key to reducing the operating costs, and sensor technology play a huge role in that process. Sensors can help reduce energy consumption by preventing inefficiencies and keeping the cost down. While there are many different types of sensors in printed circuit board assembly, some of the most common sensors used in industry are:
Thermocouple: It measures temperature using two wires made from dissimilar metals, such as copper and constantan.
Photoelectric Sensor: It measures the light intensity using a light-sensitive resistor called a photocell.
Capacitive Sensors: They detect changes in capacitance, which is defined as an electrical charge that accumulates on a capacitor’s surface when it is exposed to an electric field.
Infrared Sensors: they measure infrared radiation by detecting changes in its wavelength or amplitude.
Magnetic Sensors: Detect magnetic fields, which are created by moving electrical currents and magnets, and can be used to measure position or proximity.
Ultrasonic Sensors: Measures distance using ultrasonic waves, like the sound above 20 kHz.
Optical Sensors: they detect the light intensity using photodiodes, such as the devices that convert light into electric current.
Pressure Sensor: It measures pressure changes in a fluid such as air or water, usually by converting these changes into an electrical signal.
Acceleration Sensor: It measures the acceleration along one axis of motion using piezoelectric crystals.

5) IoT technology (such as NB-IoT)

The Internet of Things (IoT) is going through a digital transformation. A protocol known as Narrowband IoT (NB-IoT) has been developed to handle communication between IoT devices and cellular networks.
But before you can take advantage of any of these technologies, you need to design your device’s printed circuit board or PCB accordingly. Here are five ways that designers can integrate the NB-IoT into their products:
1. Ditch Wi-Fi in an IoT product with very limited space for antennas: Consider ditching Wi-Fi altogether in favor of NB-IoT. Since it operates on a different frequency from 2G/3G/4G networks, there is no interference between wireless modems and Bluetooth LE radios – which means you don’t have to worry about limiting throughput by adding too many connections.
2. Think Small when it comes to antenna size, bigger isn’t always better. If you want to add more connectivity options without increasing your PCB footprint, consider using multiple antennae of varying sizes instead of one large antenna.
3. Make It Wearable. Wearable electronics are predicted to grow exponentially over the next few years – and if you want your product to be part of that trend, then you should include some form of cellular connection capability in your design from day one.
4. Reduce Power Consumption: One of the main advantages of NB-IoT is its ability to connect smaller devices at extended ranges while using less power than standard 4G/LTE connections. To maximize the battery life, keep all unnecessary functions turned off until they’re needed.
5. Software Cellular connections aren’t just hardware; they also require software. Many cellular modules come with built-in SIM cards, so you won’t need to add your memory card reader to your design. However, if you do plan on adding external memory cards, make sure they meet the current industry standards. Also, consider including a cellular module in your design that supports the dual-SIM functionality.
By considering the above design elements for digital transformation, you can develop a better device. You can deal with the fast-changing technology by updating the PCB design. However, it does not end here, as there is a lot more to explore regarding circuit design.
Would like to know more about design elements or PC Board assembly? Email us at sales@pnconline.com

PC Board Debugging & Troubleshoot Guidelines

PC Board Debugging & Troubleshoot Guidelines

Engineers have to test the PCB thoroughly to see if it’s functional and fulfills its purpose of design. But, some manufacturers don’t do it which leads to intermittent issues or PCB failure, and such issues are hard to deal with while debugging. Whereas it becomes a disaster if a PCB fails in the field. You can avoid PCB issues by testing it thoroughly, besides it should be built by a good manufacturer. First, you should know the basic troubleshooting methods, so let’s begin.

Basic PCB Troubleshooting and Debugging

PCB of a printed circuit board has copper traces and insulators to connect heavy components to develop an advanced circuit. It is a great challenge to troubleshoot a circuit board in terms of thickness, size, signals, layers, and the types of different components as they are all very important.
Some circuit boards are simple and don’t need a deep inspection, but there are also complex PCB designs that need special tools for troubleshooting. Generally, the basic test is easy to do through ordinary equipment to assess the currents, traces, and signals on the PC Board.

Choosing the Right Tools

Simple troubleshooting of a Printed Circuit Board involves a few tools, such as a multimeter which is quite common. But, deep troubleshooting of complex boards depends on high-end tools, especially if the problem is big. Like, you will have to use the oscilloscope, an LCR meter, a logic analyzer, and the power supply to assess a circuit board’s response in terms of function.

A Visual Inspection

Initially, you have to test your circuit board visually to see some obvious issues, such as overheating, overlapping of traces, burnt or damaged components, as well as the missing parts of a PCB. You can detect the burnt components through smell as they are not easy to detect otherwise. PCB components often get burnt due to overheating or excessive current. Sometimes the components bulge due to high temperature or heat which helps you identify the damage, like in the case of electrolytic capacitors.

PC Board Debugging & Troubleshoot Guidelines
PC Board Debugging & Troubleshoot Guidelines

Physical Testing

After visual inspection of your PCB comes the physical testing by applying the power to the board. You can easily find hot spots on the circuit board by touching its surface. So, you don’t need a costly thermographic camera to find heated areas. After finding the hot parts, you should cool them with compressed air to see how PCB components function at low temperatures.

How To Troubleshoot Or Debug A PCB Deeply

Experts use four techniques for PCB tests which come up with both pros and cons. Some common methods are ICT, cable scan, flying probe, and a functional test, so let’s study them one by one.

1: The Flying Probe Technique

This method of PCB troubleshooting involves multiple probes that check the PCB by flying around. Like, there are two to six probes in this case. This technique is ideal for large circuit boards, like backplanes. It is also cheaper than the ICT, and it debugs the pcb assembly issues that occur due to poor solder connections. The flying probe also checks components’ presence and their polarities and different values. It is a simple test and can handle the revisions of a PCB.

Cons of The Flying Probe

The flying probe techniques have some flaws in terms of PCB functionality testing, unlike ICT. The flying probe also works slowly compared to ICT because several probes contact the entire PCB testing points. However, it is ideal for low volume PCBs and its total cost is also lower than other techniques.

2: ICT Or In-Circuit For PCB Troubleshoot

The ICT is a PCB testing technique that involves multiple probes which are also called the bed of nails. In this process, the ICT probes connect with the testing points of the entire PCB to check its circuits to see if the assembly is correct or wrong. Like, it tests the bad solder joints or short circuits.

This method can perform even a deeper test by adding other modules or adapters to it. ICT also tests the overall function of PCB and values of the critical components.

Cons Of ICT

Though ICT is a great tool for PCB testing, it has some disadvantages too. Like, it has costly fixtures ranging from $8000, and they go up to $ 15000. Besides, the cost increases with any changes in the technique.

You can have maximum benefits from ICT if the technician knows the testing software and other tools. ICT is the best method for large volume testing.

3: The CableScan

Another troubleshooting technique is the cablescan, which is ideal for PCBs with several connectors having a complicated interface, like the backplanes. The tester attaches the cablescan with the circuit board and it tests all the pins against each other to evaluate the assembly issues, like a solder opening or shorts.

Cablescan also helps check jumpers’ configuration and quality of the diode, besides, it also accesses the capacitance and resistance.

Cons Of Cablescan

There are some flaws with cablescan due to its limits. Like, you have to see the size of the connectors it can test in one go. Moreover, it involves an additional cost to create the hardware interface.

You have to get wetting connectors, but their wiring with the system gets delayed due to the cost or other issues. The cablescan technique and its setup take lots of time, depending on the number of connectors and their complexity.

4: Functional Testing Technique

Another essential thing is to see if a PCB is ready to function or not. The functional test consists of test probes, software, and connected cables, and it determines PCB behavior according to design specifications.

The CM can also create the hardware and software or test fixtures to test the PCB function. This process is ideal for simple and small PCB layout designs. The engineers also develop fixtures for a bench test and make a plan to target the assembly issues involving less time and cost to assess the components. The functional test also helps see if the entire circuitry is working as you want. However, you need detailed debugging to find different faults and remove them.

Role of Engineers and Technicians In PCB Troubleshooting

You need experienced people to troubleshoot a PCB, such as engineers and technicians. Besides, these experts should know how to use the testing tools. Like, in the case of ICT, the engineer should know how to test the semiconductor. He should also know the DFT, end-user applications, as well as ICT optimization. The knowledge of hardware and software development is equally important.

When it comes to the cablescan, the troubleshoot company should have a huge inventory of already built connector interfaces. You can reduce the development cost and time by having all resources in hand.

Likewise, the technicians should debug with a flying probe according to the circuit board. In other words, the testing method should be compatible with the PCB design.

Most engineers use the LabView for a functional test, as it works according to the frequencies, variable supply levels, and several other PCB requirements. Such a deep examination of the PCB involves less amount of hardware, unlike surface-level testing.
Both basic and deep troubleshooting methods help you to find the right PCB issues, leading to an effective product by removing those issues.

Frequently Asked Questions

What Is ICT In PCB Troubleshooting?
ICT is a PCB testing technique that involves multiple probes which are also called the bed of nails. The ICT probes connect with the testing points of the entire PCB to check its circuits to see if the assembly is correct or wrong.
What Is The Flying Probe In PCB Debugging?
This method of PCB troubleshooting involves multiple probes that check the PCB by flying around. There are two to six probes in this case. This technique is ideal for large circuit boards, like backplanes. It debugs the assembly issues that occur due to poor solder connections.

What Is The Role Of A Functional Test In PCB?
The functional test consists of test probes, software, and connected cables, and it determines PCB behavior according to design specifications. The functional test also helps see if the entire circuitry is working as you want.
Is Basic Troubleshooting Enough For Circuit Boards?
No, the basic testing involves only visual and physical tests at basic levels. You need deep testing with specific tools, especially for complicated circuits.

Final Thoughts

PCB of a printed circuit board has copper traces and insulators to connect heavy components to develop an advanced circuit. It is a great challenge to troubleshoot a circuit board in terms of thickness, size, signals, layers, and the types of different components as they are all very important.
Some circuit boards are simple and don’t need a deep inspection, but there are also complex PCB designs that need special tools for troubleshooting. Generally, the basic test is easy to do through ordinary equipment to assess the currents, traces, and signals on the PCB. Whereas deep troubleshooting involves different techniques.
Would like to know more about PCB debugging, troubleshooting printed circuit board assembly? Email us at sales@pnconline.com

PCB Design

Possible Problems & Solutions in a PCB Design Process

Whatever electronic and digital device you have, it depends on a printed circuit board for signals transmission to help it operate. These devices need a well-designed structure and manufacturing, but you have to encounter many issues in this case that we will discuss here.
Any issue in the design of a PCB would cause delays in its manufacturing, so you must know how to avoid them. Similarly, some problems happen before the design that designers can avoid through proper strategies.

PCB Issues before Its Design

The designer should consider certain steps for a successful design, such as project management and its timeline. You should allocate the project resources and time like there should be enough time to edit your design according to the rules. Sometimes the designers miss certain schedules in a hurry, delivering an incomplete design having many errors.
The designer should be an expert in using the latest design tools. You must have a complete library of CAD materials and should also know the basic design rules. Though these steps look minor, they should be in hand before starting a PCB layout. Now, we will discuss some common PC design issues, so let’s begin.

Component Problems

Sometimes the designers choose the wrong components just to speed up the process, but it can affect a circuit board’s effectiveness. Designers often go for an existing circuitry or select an old and familiar library as it’s convenient for them. But, it becomes a problem when such components or parts are not feasible due to their price or they are not available. So, the designers should be well-informed in terms of design libraries and should choose the Printed Circuit Board parts wisely.

Issues with Physical Parameters

The designers often choose familiar things related to materials, board layout, and outline, as well as the stack-up for layers. However, the prices of such materials may change, besides, their availability can also become an issue. Such changes can affect the design rules according to a different substrate. Likewise, the outline of the PCB also changes due to the design and fabrication limits. So, the designer should discuss all design parameters with their manufacturer before designing the layout.

Locating the PCB Components

A PCB has different components and their footprints should be well-placed on a PCB for precise manufacturing, and it’s called the DFM or Design for Manufacturing for a circuit board manufacturer. If you ignore the DFM, it would result in a high-cost and less effective PCB.
There are certain DFM rules to follow in terms of distance between the components and the circuit board’s edges, the distance between different components, and spacing between various features of the board and components.
There should be enough space around the test points to help a circuit board get tested automatically. You should also consider the placement of the parts that get hot as it can result in thermal issues, affecting a PCB’s performance. Moreover, the high-frequency components should be located in such a way as to have powerful signals.

Routing Issues of Traces

Another PCB design issue is regarding the incorrect trace routing. Like, the widths of the traces and their distance should be correct. The designer should discuss these parameters with their manufacturers to have a precise trace width. Moreover, the weight of the copper should also be correct for perfect routing.
At the same time, the designers should input these values into the design rules while working through CAD. By having well-planed rules and design limits, you can avoid issues regarding a controlled impedance or routing. You can also reduce the burning of traces that occurs due to a lack of copper in case of high currents. You can also eliminate poor signals, and poor copper balancing that happens on the layers of a PCB.
Similarly, the issue of the thin high-voltage traces is also there. Sometimes the trace of a circuit board needs a high voltage that a small trace of less width can’t handle. So, you must calculate the trace width through PCB software, like CAD which has a width calculator for PCB traces.
The designer also has to consider the suitable rise in the temperature for certain traces that helps them to evaluate the current capacity of the trace to choose a compatible copper weight
Moreover, you need high-frequency routing for high-speed signals. Trace routing is not an issue in the case of microcontroller PCBs because they do not need high-speed signals. But, the trace paths need attention for the high-frequency circuit boards because of the address bus and external data.

PCB Design
Possible Problems & Solutions in a PCB Design

Ground Planes and Power Issues

Most designers ignore a network that delivers the power and sometimes they don’t even think about it. If you don’t have a well-designed ground, it would result in poor signals with the noise and EMI emissions. So, the designer should focus on these issues with proper planning after discussing them with the manufacturer. You should know the precise configuration and planes’ location in the layer stack of a PC BOARD.
The design of the ground planes is important to avoid the blockage of signals’ return paths. Moreover, you can also control the interference of the ground and analog with each other by considering these points. Both ground and analog are different in terms of circuitry.
The electric devices involve the linear and switching regulators in terms of voltage. There is low energy by linear regulators, but they are less costly and many PCB designers use them for this reason. But, the linear regulators are not easy for low-noise applications that use high power.
Whereas the switching regulators involve more complicated designs than linear regulators. They are effective in terms of energy, but they need a detailed design for a PCB. So, you have to be careful in this case and should follow the datasheet rules strictly.

System Design Issue

A PCB is just a part of a large electronic device having a specific system that a designer has to consider. However, most designers focus on just the design of a circuit board. Such ignorance can cause several issues during the PCB assembly, such as incompatible wires and board connectors, inaccessible human interfaces or switches, and the lack of space for repair or system debugging. So, the electrical engineers should focus on the design of the full system instead of just a circuit board.

Wrong Usage of Decoupling Capacitors

The electrical parts of a circuit board need stable electricity without interruption. The hardware of a PCB involves decoupling capacitors for stable voltage and this decoupling happens on the rail that supplies the power. You must place the decoupling capacitors close to the pin for maximum and stable current to help it pass through the decoupling capacitors before it reaches the pin.
All these issues are technical that affect the hardware of circuit boards. You must solve these issues to have an effective and functioning product or device.

How to Find the Design Resources for PCB

You can avoid or eliminate the above problems by accessing suitable design resources. You can easily find them online from different companies that offer PCB design, manufacturing, and also provide calculators to calculate specific design parameters. Such companies also offer PCB design and manufacturing services other than just guiding you in a PCB design.

Frequently Asked Questions

What Is Meant By PCB?
PCB is an abbreviation of Printed Circuit Board. It is used in electrical devices to provide them with signals or current to operate. Printed circuit boards are used in different industries, including networking, electronics industry, gadgets, aerospace, and much more.
What Is DFM In A PCB?
DFM is Design for Manufacturing which means you have to have a special layout design for a PCB to be manufactured correctly. You will have to face many issues if there is no DFM.
What Are PCB Design Issues?
PCB design involves different issues regarding its components, power supply, routing, design parameters, decoupling of capacitors, layers stuck-up, copper weight, etc.

Final Thoughts

Any issue in the design of a PCB would cause delays in its manufacturing, so you must know how to avoid them. PCB design involves different issues regarding its components, power supply, routing, design parameters, decoupling of capacitors, layers stuck-up, copper weight, etc.
The designer should consider certain steps for a successful PCB design, such as project management and its timeline. You should allocate the project resources and time like there should be enough time to edit your design according to the rules. Sometimes the designers miss certain schedules in a hurry, delivering an incomplete design having many errors.
All these issues are technical that affect the hardware of circuit boards. You must solve these issues to have an effective and functioning product or device. You can avoid or eliminate the above problems by accessing suitable design resources. You can easily find them online from different companies that offer PCB design, manufacturing, and also provide calculators to calculate specific design parameters.
Would like to know more about the PCB design process or PC Board assembly? Email us at sales@pnconline.com