Tag Archives: PCB Design

RF Microwave PC Board Applications

RF Microwave PC Board Applications

There are numerous uncertainty in RF (radio frequency) PCB (printed circuit board) designs. Whenever it comes to circuits with frequencies below microwave (particularly low intermediate frequencies digital logic circuits), however, careful design is the only way to ensure first-time circuits designing effectiveness while mastering all design concepts.

Plated-through hole (PTH) has been used to connect traces on various layers simultaneously, and resistance is frequently integrated inside the layer stacking or generated by selectively laying down resistant material. Most of the needed electronic systems are usually put on the top and bottom layers, with interconnections created among parts and traces using soldering or wire bonding. The microwave efficiency, as well as the physical behavior in the predicted surroundings, is heavily influenced by the structure of the underlying layers.

Nevertheless, 2 to 3 PCB variants can ensure circuit reliability at frequencies beyond microwaves and high-frequency PC-level digital logic circuits. Nevertheless, at frequencies above microwaves, more generations of PCB design are required for continuous improvement in RF circuits. As a result, various challenges are almost expected to arise along with the process of RF circuit design.

RF Layout Concept

The preceding broad principles should be followed while designing an RF layout:

● As often as feasible, high power amplifiers (HPAs) and low noise amplifiers (LNAs) must be separate. High-frequency RF transmitting circuits were separated from low-frequency RF receiver circuits by a large distance.
● On the high-frequency portion of the PCB boards, at least a detailed ground must be accessible, and through-hole must be avoided. The more copper foil surface area there is, the better.
● Circuit and electricity are both affected by decoupled in the same way.
● The distance between the RF output and the RF input must be as large as possible.

Those circuit boards are made to work at moderate and incredibly high frequencies (megahertz and gigahertz). They should be made out of high-quality materials. Here are a few of them:

● FEP
● LCP
● RO laminates are made by Rogers.
● FR-4 High-Performance
● Hydrocarbons loaded with ceramics
● Woven or tiny glass fibers in PTFE

Particular properties of materials include a low optical tangential, a low dielectric (Er), and outstanding Coefficients of Thermal Expansion (CTE).

PCB Requirements for RF Radio Frequency

The RF PCBs have dielectric thicknesses of 0.1 to 3.5mm and are available in copper with weights ranging from 0.5oz to 15oz with UL certifications of 80z. With a minimum line width and spacing of 0.075mm, they have a thermal capability of 0.82 W/mK.

It can build the best-fit solutions for your important RF electronics product using our comprehensive understanding of accessible RF substrates, driven product development, and long-term product sustainability.

Purity PCB could assure that all price objectives and budget were reached through early coordination, future ensuring your RF board products to the least potential price point, with a proactive and challenging attitude to costs monitoring.

Purity delivers the degree of reliability, reproducibility, and affordability to bring any RF Microwave Printed Circuit Board demand to fulfillment, from one-off prototype needs to producing a manufacturing suite of products.

Framework and Methodology of RF Circuit Design

Higher – frequency Printed Wiring Boards are required for applications such as network and communication (PCBs). Whenever these organizations approach PCB makers for a solution, the manufacturers typically suggest Radio Frequency (RF) or microwaves PCBs. PCB makers recommend these PCB assemblies for information and telecommunication application for a variety of reasons. Let’s have a glance at certain fundamentals.

Physical segmentation and electronics separating are two types of partitioning. The first is primarily involved with the part arrangement, orientation, and shields, whilst it is divided into power systems, RF routes, sensitivity circuitry, signaling, and ground partition.

A. Concept of Physical Partitioning

The principle of element design:

Components design is critical to achieving a successful RF system. The most efficient method is to first fix parts along the RF line and have their orientation changed so the RF route may be minimized with input far enough from outputs and low – and high circuitry segregated as much as feasible.

The principle of PCB laminating

A most effective method of Circuit board fabrication is to place the primary surface on the two layers beneath the first planes and the RF traces on the first layer. The diameter of the RF route via holes must be limited.

The idea of RF tracking and RF parts

The design of RF tracking and RF parts Linear circuitry such as multi-stage amplifiers can separate all RF regions within the physical environment, but duplexers, mixers, and mid-frequency amplifier/mixers frequently cause mutual interfering among several RF/IF channels. As a result, this form of influence should be avoided at all costs. Crossing RF/IF traces and leaving a grounding around them is recommended. The proper RF routing is critical to PCB efficiency, hence why components layout takes up the majority of the design effort in cell phones.

B. Principles of Electronics Partitioning

The concept of transmitting power:

Because the DC in most mobile phone circuits is usually relatively low, tracing width isn’t an issue. Tracing with a high flow and as broad a breadth as feasible, on the other hand, should be constructed separately again for energy availability of quality amplifier to keep transmission voltage to a minimal. Numerous through apertures must be used to transmit energy from one plane to the other to prevent massive power losses.

High-power systems’ energy decoupling:

If perfect couplings at the supply pins of a high-power amplifier are not accomplished, high-power noises would be emitted throughout the boards, causing numerous problems. Grounding is critical for high-power amplifiers, and a metal shielding covering is frequently required in their designs.

The concept of RF input/output separation:

For most cases, it also is critical to ensure that RF outputs are far from RF inputs, this applies to amplifiers, bumpers, and filters. In the worst-case scenario, self-excited vibrations may result if the amplifiers and bumpers inputs are restored to respective input terminals at an acceptable amplitude and phase. In ideal circumstances, they would be able to perform reliably at any voltage and temperature. In reality, they could become unstable, causing noise and interference signals to be added to RF transmissions.

Overall, because of its spread variable circuits, RF circuits have skin impact and coupler impact, which distinguishes them from low-frequency circuits and DC. As a consequence, the difficulties highlighted above should be given extra attention during the designing of RF circuit PCBs to ensure that the circuit is both precise and efficient.

Advantages of RF Microwave PCB Applications

Along with its multiple evident advantages, RF PCB has seen the quickest development. The following are a few of the numerous advantages:

Quick operating ability:

Because RF PCBs operate at such a high frequency, they can effectively provide the signals in the circuits in a short period. The total gadget can work faster than ever before due to the obvious quickest connectivity among the materials due to speedy information transit. As a result, smartphones, aeronautical devices, and other RF PCB products can operate in a matter of seconds.

Multi-layered board:

RF PCBs can be used in circuits with various layers based on the stack-up from the PC Board manufacturer. This ability to stake out allows people to work at their best. Multi-layered circuits have high densities that allow them to fit into a tiny device. It also minimizes the circuit’s likely weight and making it more convenient to use.

Cost-effective:

Several layers The PCB kind of RF is a significant influence in lowering the circuit’s costs. The price of the circuits constantly decreases as the weight and size of the circuits decreases.

Pitching element placement:

The finer-pitched materials of the circuits may be easily placed just on RF PCB due to its sophistication. This is critical to remember while beginning the process.

Strong Sensitivity Strength:

Among all the positive aspects of the RF PCB, its high-temperature stress endurance energy is overlooked. It’s a boon for industries that work in high-temperature conditions. Any regular PCB would fail to work in such a hot environment as found in the army, airline, and automotive sectors, but RF PCB, with its extreme sensitivity capability, is just like a ray of sunshine in those domains.

At PNC, you can get your RF microwave design or PCB Assembly requirements fulfilled. Just Email us at sales@pnconline.com.

What is a Gerber Viewer in PCB Design

What is a Gerber Viewer in PCB Design?

Gerber Viewer

A Gerber viewer is any software application that enables you to examine the contents of a Gerber file. While some of these applications need installation, others are available online and do not require downloading or installation. All you have to do to see your Gerber files online is upload them.

Gerber files

Before the establishment of Gerber files, there were no industry-standard guidelines for manufacturing printed circuit boards (PCB). The papers that included the Printed Circuit Board requirements contained a diverse range of information. There have been many instances of miscommunication and misunderstanding between consumers and manufacturing firms. Finally, universal interoperability across PCB designers and manufacturers has been achieved with the introduction of the Gerber format. In order to work with a file format independent of the CAE/CAD program being utilized, it allows the latter.

After the project has been finished and adequately monitored, it should be sent to the manufacturer. The designer may transmit securely, with prior permission with the business, any Gerber files generated by the export feature. Even though many applications automatically export to this kind of archive, all documents may be compressed in one zipped file. Many firms accept just one compressed file. Testing and checking your files with various Gerber viewers is usually intelligent practice before sending them to the producer. It is a great technique to be followed by all designers.

The Gerber format

These are vector documents consisting of a series of instructions that create a visual object flow. The directions for making the hole on the PC Board are also included. Nowadays, businesses that manufacture printed circuit boards need clients, nothing else. The essential program for electronic design contains and allows the export of the whole work to this format. It is thus the first thing an electrical designer should look for in his CAE program.

pc board

The standard format now used is RS-274X. It’s an extreme version in the same document as it contains:
• the draw and flash commands
• the XY coordinates
• the openings
• the configuration parameters

Versions of Gerber Files

Nobody needs to order a delayed printed circuit board (PCB). Ideally, you submit your design file to the PCB maker, and then the manufacturer organizes the manufacturing of the board based on your file and sends goods to you. However, the actual issue is not so easy. It typically takes such a long time since you submit your designed file to the final arrival of your board. Your discontent with your PC Board manufacturer will grow with increasing turn-time.

You may do a lot to reduce this time from your viewpoint throughout the whole process. After all, efficiency and efficiency are your responsibility. As connectors and translators for PCB engineers and PCB manufacturers, German files serve a crucial role in allowing manufacturers to understand design engineers’ thoughts and ideas. Excellent and dependable products may be produced successfully and efficiently. There are now three Gerber format versions available:
• Gerber X2 – the latest Gerber format, including stack data and characteristics
• RS-274-X – an extended Gerber format version and extensively used.
• RS-274-D – Gerber’s oldest version, progressively replacing RS-274-X.

Over the years, the Gerber file format has seen numerous modifications and upgrades. Thus Gerber files have been updated in many versions. The earliest version, also known as RS-274-D, is Standard Gerber. It is mainly out of usage today, and standard Gerber files are not acceptable on the official website of Gerber. Gerber is extended to include RS-274-X, commonly known as X-Gerber. Extended Gerber was introduced in 1998 and is a human-readable ASCII format. The previous format has been enhanced by incorporating information in graphics and pictures. Gerber’s latest version is Gerber-X2, an expansion of Gerber-X. It is compatible with most CAM programs and enables the user to add file characteristics.

These characteristics are like labels that offer picture file information and features. It also simplifies the transition of PCB designs from CAD to manufacturing. UCAMCO has just launched another version named Gerber X3. While not extensively utilized, UCAMCO believes that its interoperability with other applications and simplicity of installation will become the new norm.

Gerber Files Generation

PCB engineers should never be too indolent to create their Gerber files for the following two reasons. You cannot be sure that the PCB software you use is the same as the software used by your PCB Manufacturer. You must create Gerber files yourself if your PCB producer utilizes various PCB software, and additional discussion and validation will certainly cause extra time and delay the manufacturing process.

Although PCB manufacturer utilizes the same PCB design tools, it is still advisable to create Gerber files yourself since differences in software applications may also lead to potential mistakes. PCB design engineers should thus learn to create Gerber files themselves in order to guarantee delivery speed and reliability of end products.

Gerber files typically include driver layer, solder mask layer, and silkscreen layer design data. In addition, Gerber files should still be produced to prevent potential misunderstandings in two levels with the same design data. Distinct PCB design software has different Gerber file generating operation procedures.

Converting Gerber Files

Depending on the circuit design software you choose, you can generate Gerber files. There are many of these applications. However, some of them are popular with Proteus, Altium Designer, and CircuitMaker. Eagle is also one of the simplest to use. You will have to change your approach to various programs, but here are basic principles. Created by a firm called Gerber, Gerber’s format now includes standard PCB software that is generally recognized, capable of defining board imaging conditions, such as driver layers, solder mask layers, and legendary layers. The printed circuit boards are intended to produce additional board manufacture information based on which board production is started, using a specialist EDA system (Electronic Design Automation) or a CAD system (Computer-Aided Design).

PCB producers will not completely grasp all PCB design file specifics unless it includes the Gerber file as reference and guidance. For each picture of a circuit board, the Gerber format file is applied and may be used for both manufacture of bare boards and the assembly of PCB. For bare-board production, Gerber format is required by conventional photoplotters and other factories that want image data such as legendary printers, direct images or AOI devices, etc.

Simply stated, Gerber files format must be dependent from the beginning to the conclusion of the PCB manufacturing process. In connection with PC Board assembly, a stencil layer is included in the Gerber size, and component positions are controlled, which is also considered as important reference data for the assembly, assembly, and combinations of SMT (Surface Mount Technology).

You need to load your board to the design programme of your circuit. Sometimes this process is easy, but sometimes certain export parameters need to be adjusted. You must next utilize the CAM processor to convert your data to Gerber files. The duration of this procedure varies significantly depending on the size and complexity of the board.

Once you have completed your CAM processor, you will have a set of files labeled with the name of your board but various extensions. You must compress and submit your layer files, drawings, box guidelines, and inside layers to the PCB maker. In order to generate the required Excellon files, you must typically return to the CAM procedure.

Now that you have your Gerber file, maybe your question is how to convert a Gerber to PDF? You will need to locate an online service or application to convert Gerber files to PDF files. Many of these applications are online and do not need your computer to be downloaded or installed. Just upload and wait for the software to convert your files.

Example circuit diagram

The figure below, along with the 3D construction, illustrates the transistor amplifier wiring schematic. It is a promiscuous project, some of them in SMT with discreet components. The project contains elements, words, images, components, and more.

Example circuit diagram

Final Thoughts

Gerber Viewer Software for Windows is a software program that allows you to read and examine Gerber files (GRB files) using its comprehensive toolkit. Some of these applications are also the software for the Gerber editor so that you may examine and modify Gerber PCB designs. The program may export the file viewer in different formats, such as SVG, PDF, PNG, PDF, JPEG, etc. If you wish, you may also print out the design.

PNCONLINE equipped with big and sophisticated machinery, are used CNCs may accomplish the more advanced versions are devoted to a particular operation or all jobs simultaneously. These machines start producing PCBs instantly without being linked to a computer and also can interpret Gerber client files directly thus equipped with processors. Other kinds of equipment, always in accordance with the Gerber requirements, can conduct circuit controls and automated optical inspections (AOI).

Interested in getting your PCB design done on an urgent basis in New Jersey? Get it done at PNCONLINE.

Contact us at sales@pnconline.com

Main aspects of the PCB industry - PCB Design, Manufacturing & Assembling

Main aspects of the PCB industry – PCB Design, Manufacturing & Assembling

In this article, you’ll get to know the fundamentals of PCB manufacturers and how our company “PNC Inc.” is unique from other manufacturers in the United States.

What are the three main aspects of the PCB industry?

According to our experience of more than 50 years as the leading PCB Company in the industry, we can easily write that three main aspects in the PCB industry for which most clients look for are:

PCB Design
PCB Manufacturing
PCB Assembly

Design, Manufacturing, and assembling of PCB is a systematic method for examining the parts and components which is needed to execute. It included obtaining costs of a commodity and seeks to cut costs before actual development begins. There are specific manufacturing, design, and assembling principles required to be following during the PCB process execution of any electrical or electronics part. Eventually, a final design concludes the series with a review among the most common issues related to the PC Board or Printed Circuit Board.

Until continuous description, it is important to explain how the word ‘manufacturing design’ is used when speaking more generally and when talking more directly about PCB output. In general, design for manufacturing and assembling may lead to the simplification and optimization of a model or theoretical design in anticipation of their production. As these words are used to describe PCBs, they also imply a more straightforward study of possible production problems.

Ideal Design can Help PCB Fabrication:

The purpose of addressing the nature of manufacturing and assembling, in general, is to decide how a commodity can be produced and installed most cost-effectively. Manufacturing is to be done in a way to reduce the total cost and, more evidently, assembly design is required to be done to reduce commodity inputs, capital operating costs, and labor reduction. The emphasis is both on applying standards to lower manufacturing costs and also aim to shorten the product creation period. The fusion of these methods is often widely called manufacturing and assembly design for Mil-Spec PC Board.

Rules of PCB Manufacturer and Assembly:

After the conceptual Circuit Board Fabrication design has been developed, the company is required to research opting towards the most economical way of executing the PCB fabrication. The construction of a prototype or the development of a new version of a product could require a conceptual design. Once a conceptual design has been developed, a designer review will analyze the design’s bill of materials.

Try to use fewer parts in a design:

Reducing the number of components in PC board manufacturers is a simple aim with clear advantages. It would minimize construction costs and assembly difficulty, while not as obvious, it is of great advantage. When PCB assemblies are supplied using devices, for example, they are restricted to the number of modules they may be supported in a single port.

Being aware that if use many parts are used by pick and place machines in circuit boards fabrication will contribute to non-assembly. Cost savings are obvious. For example, if a design needs a resistance of 20K ohms, and 10K ohms resistance has been already used in the design, it might also be easier to use two 10K ohms resistors in sequence if this reduces the amount of time the computer picks and places simulation.

In the same way, you can speed assembly time up and transfer portions of the test requisites to the IC maker in search of regularly integrated circuits that can combine part of the specification into one IC. Having in mind the number and form of PCB components is perhaps the most significant move towards reducing total PCB manufacturing costs. In a term, the elimination of a component for the final design would decrease BOM costs, minimize purchase costs, production time, test time, and workload assembly feedback.

Use Original Components:

The use of composite materials will dramatically reduce construction time and expense. It goes without saying that defining a specific custom approach would significantly raise the initial cost of every product which may render a concept unfeasible. In addition, the use of more generic materials will shorten the supply chain of a commodity and mitigate supply issues. The fact that their measurements are easier checked until they are included in a PCB design specification is another advantage to prefer electronic interfaces.

Use Multifunctional Parts for Printed Circuit Design:

When an electric power part may be used for many uses in a model, the designer must take account of it. For instance, utilizing a container that can also act as hot in a design can give considerable cost control. A further definition of a dual-use mechanism through the use of a blockade as a link to ground from PCB board assembly.

Install all PCB Assembly Directions:

If practicable, all the board companies would plan all pieces to be assembled from the same side of an assembly around one axis. This is also referred to as a “Top Down” assembly in which all parts from top to bottom are placed. The use of this kind of single-sided assembly method saves time when a product is turned and rotated during assembly. As for all of the design choices, PCB design engineers would then have to consider whether producing a smaller PCB fabrication with components placed on every s sides of the board safer is compared with developing a larger PCB.

Advantages of PCB Manufacturers and Assembly:

• Fewer pieces ought to be handled and recorded.
• The expense of billing products should be minimized.
• The cost of handling can be reduced to some degree.
• Labor and input of electricity should be reduced.
• The total production period may be reduced to significantly increase manufacturing productivity.
• Lower sophistication results in greater efficiency.
• Increasingly competitive products should be.
• High Replacement margins are achieved.

The Circuit Printed Boards Manufacturers and prototype PCB manufacturers should have a simple way to reduce the next design bill. The advantages of reducing the number of designs are evident. Materials will become more viable as they are cheaper and less vulnerable to loss, however by lowering the number of materials used in the production of product costs, paperwork needs will be decreased and the work required for SMT assembly. All these factors contribute to lower manufacturing costs and encourage either better commodity or price profits at more affordable prices.

In addition, the processing period is shortened so the goods can be delivered to customers in less time. An optimal printed circuit board may be built with the right PCBA assembly considering all the above implementation of these objectives.

At PNC Inc., You’ll get your PCB done from any of the following design tools of your choice as we have an in-house facility available for all the tools.

• Cadence Allegro v16
• OrCAD Capture v16.3 & OrCAD PCB Designer v16.3
• PADS v9
• Signal Integrity Analysis: Hyperlynx

You will get the following deliverables from us:
• Gerber, drill files & PCB File
• Assembly and fabrication files
• Formal drawings on your (client) desired format

Why you should choose us & why we are better than others in the Market?

At PNC Inc., we have got the facility of executing all the design, manufacturing, and assembling in the same building. In this way, you don’t have to visit different places to check the progress of your work. You’ll get all the things done in the same building at our Nutley, New Jersey facility. That’s why we are a “one-stop-shop” and providing all the services under the same roof.

Embedded software development along with PCB Assembly

Embedded software development along with PCB Assembly

No company can excel at every aspect of new product development and trying to do everything can dilute an organization’s focus on the tasks that are essential to its success. For example, most companies have long ago outsourced the PCB design and fabrication steps of new product development. This same need to focus on the essential is true of software development too. It is difficult for a software company to excel at every type of software development because of the ever expanding universe of software languages, operating systems, and architectures.  A cloud based SAAS or PC based application is very different from embedded software running C on a 16-bit processor, and it takes very different software development skills to develop that kind of embedded application.

Unlike cloud based or PC based applications, embedded software is optimized to run on a specific custom hardware platform with limited processing power and memory.  It often runs on a real time operating system or no operating systems at all, and the interface of an embedded device may consist of only a small display, or just a few buttons and LEDs.

The unique challenges working with embedded systems is why many software companies outsource their embedded software projects to experts like PNC.  Here are three reasons why they do.

The embedded system is not the organization’s primary product line.

Many products on the market require options or accessories that are important to the customer, but not are not similar technically to the primary product. A cable set top box remote is a good example.  Customers expect a cable set-top box to have a remote, but the low power microcontroller embedded in the remote is likely to be completely different from the high power processor and OS driving the set-top box functions.  Similarly, Industrial or commercial equipment may have optional modules to provide additional functionality like a cellular modem.   These optional modules have independent processors and embedded software which is unrelated to the primary product software.

In these cases, software companies will choose to focus their development resources on the primary product, recognizing that it is more cost effective to outsource the software development for the ancillary embedded products to a company that is familiar with embedded microcontrollers and the constraints that come with low power operation. If that company can design the hardware and perform SMT assembly too, it becomes an even better value.

Embedded software development along with PCB Assembly
Embedded software development along with PCB Assembly

The software is deeply embedded and invisible to the user

Successful software companies are highly focused on the customer experience with their product. They are constantly refining the look and feel of the industrial design and user interface to make the product more attractive, and easier to use.  But what if the product doesn’t have a user interface?   What if it is a router or a motor controller?  Products like these need a simple interface for initial configuration, but they typically operate in the background, invisible to the customer.  In this case the goal is to optimize for cost and performance rather than user experience.  Deeply embedded applications without a sophisticated customer facing interface  are ideal to outsource to a company like PNC because the product requirements are centered on the embedded functionality – there is no need to maintain the same look and feel as the company’s customer facing products.

The application requires specialized expertise

 Sometimes a software company needs embedded expertise that it just doesn’t have in-house.  For example, they may need a Zigbee or Bluetooth RF stack, or expertise with digital signal processing on low power Digital Signal Processors DSP.  In some challenging embedded applications, a company may need a partner with the expertise to  iterate the design of both the hardware and software simultaneously to arrive at an optimized embedded solution.  In that case you need a full service provider like PNC.

PNC offers the full solution to developing embedded products

When it comes to product development, PNC is not just a PCB manufacturer.  The engineers at PNC can work with you to design and manufacture the product hardware, and then develop the embedded software to run on that hardware.   If you have a challenging embedded software or hardware project, contact PNC today and find out how they can help.

What are IPC standards for PCB Design, PCB Assembly and PCB Fabrication?

IPC standards are electronic design, manufacturing and inspection standards published by IPC, a global trade and standards setting association focused on the electronics industry.  IPC’s standards are used worldwide and have been essential to the globalization of the electronics industry. Anyone who designs or manufactures PCB assemblies needs to be familiar with the standards.

Most engineers and designers first encounter the IPCstandards in the fabrication notes on PCB drawings or because they have been trained on ubiquitous IPC-A-610 “Acceptability of Electronic Assemblies” which illustrates quality standards for PCB soldering and cleaning.

The IPC publishes standards for every aspect of PCB design, manufacturing, and inspection

The major categories of the standards are:

  • General documents
  • Design specifications
  • Material specifications
  • Performance and inspection standards
  • Flex assembly and materials standards

The General Documents cover terms and definitions, PCB tolerances, PCB documentation, and bare PCB testing standards.

The Design Specification Section focuses on guidelines for the electrical engineer and PCB layout designer.Perhaps the two best known design standards are IPC-2221 “Generic Standard on Printed Board Design” and IPC-7351B Generic Requirements for Surface Mount Design and Land Pattern Standards.  Fortunately for the PCB designer, these generic standards are encoded in the PC Board layoutsoftware’s internal design rules, so it is not necessary to have them memorized when laying out a PCB.

The Material Specificationsdefine the specifications for everything in the electronics supply chain from the pre-preg to the silkscreen. These specifications are often referenced in the notes on a PCB drawing.  One typical example is IPC-4552“Performance Specification for Electroless Nickel/Immersion Gold (ENIG) Plating for Printed Boards” which sets requirements for the gold plating of PCBs.

The Performance and Inspection Documents contains one of the most important standards, IPC-6011 “Generic Performance Specification for Printed Boards.”   IPC 6011 establishes the requirements for PCBs and defines the level of quality ultimately reliability for PCBS the IPC-6011 standards cover the following topics:

  • PCB design
  • PCB assembly
  • PCB testing
  • PCB inspection
  • PCB documentation

Flex assembly and materials standardscovers both the materials and the assembly standards for flexible printed circuits

IPC Electronic Product Classes

 

The most important part of IPC-6011 is the definition of classes of electronic products.  The definition of classes is then used to determine the PCB design, manufacturing, and inspection rules.

 

IPC 6011 defines three classes of electronic products and one subclass.

  • Class 1 – general electronic products: Class 1 products are for applications in which the functionality and low cost primary drivers, and reliability is secondary. This class includes most low-cost electronic products. PNC and most U.S suppliers do not manufacture class 1 PCBs.

 

  • Class 2 – dedicated service electronic products: Class 2 products put more emphasis on high reliability and extended life. Uninterrupted service is preferable, but not mission critical. The use environment of the class 2 product is not extreme enough to cause Printed Circuit Board This is typically the default standard for layout application design rules and for U.S. manufacturers.

 

  • Class 3 – high-performance electronic products: Class 3 products must provide continuous performance or performance on demand with no downtime or performance degradation. The end-use environment may include temperature extremes, vibration, and high altitudes. This category includes critical systems such as medical life support systems.

 

  • Class 3/A -space and avionics: Class 3/A is a new subclass of class 3 specifically for military and aerospace electronics. They are considered mission critical and failure could result in the loss of the spacecraft or aircraft. It is the highest class for PCBs, and class 3/A PCBs have very stringent (and expensive) manufacturing and inspection criteria.  When selecting a manufacturer for class 3/A PCBs it is essential to choose a company like PNC with extensive military and aerospace experience.

 

Differences Between Class 2 and Class 3 PCBs

 From an engineer’s standpoint, the selection of product class affects the design rules used by the layout software, the PCB construction and most importantly from a cost standpoint, the level of inspection and reject criteria at the bare PCB and finished assembly level.  Oneof the most consequential decisions for the final unit cost of the PCB assembly will be the decision to go with either an IPC class 2 or class 3 quality level.

 

At the PCB design stage, there are different design rules for class 2 and class 3.The design rule that has the most effect on the layout is that the difference in the size of via pads and drill holes specified for plated through holes.

 

Larger pad and drill sizes are required on IPC class 3 PCBs to ensure the a 360 deg connection between the pad and the hole plating, and to minimize the potential for drill breakouts from the annular ring on the far side of the hole due to drill drift.   Besides taking up more PCB real estate, the larger via pad specification for IPC class 3 PCBs limit the fan out of BGAs to 0.8 mm pitch and larger. Smaller pitch BGAs cannot be accommodated by class 3 design rules, because traces cannot be routed between the larger pads.

 

In manufacturing, there are tighter inspection criteria for defects to the bare PCB that increases inspection time and decreases bare PCB yield. Both increase costs.  Similar inspections and occur after soldering and cleaning, and again, the tighter inspection criteria decrease PCB yield.

 

PNC can help you keep IPC class 3 costs in control

 The best way to keep IPC class 3 PCB costs under control is to work with a manufacturer who has the expertise and equipment to keep yields high.   PNC has deep experience in fabricating space and avionics rated PC Board assembly. Ask the experts at PNC to work with you on your next mission critical design.