Tag Archives: pcb assembly

RF Microwave PC Board Applications

RF Microwave PC Board Applications

There are numerous uncertainty in RF (radio frequency) PCB (printed circuit board) designs. Whenever it comes to circuits with frequencies below microwave (particularly low intermediate frequencies digital logic circuits), however, careful design is the only way to ensure first-time circuits designing effectiveness while mastering all design concepts.

Plated-through hole (PTH) has been used to connect traces on various layers simultaneously, and resistance is frequently integrated inside the layer stacking or generated by selectively laying down resistant material. Most of the needed electronic systems are usually put on the top and bottom layers, with interconnections created among parts and traces using soldering or wire bonding. The microwave efficiency, as well as the physical behavior in the predicted surroundings, is heavily influenced by the structure of the underlying layers.

Nevertheless, 2 to 3 PCB variants can ensure circuit reliability at frequencies beyond microwaves and high-frequency PC-level digital logic circuits. Nevertheless, at frequencies above microwaves, more generations of PCB design are required for continuous improvement in RF circuits. As a result, various challenges are almost expected to arise along with the process of RF circuit design.

RF Layout Concept

The preceding broad principles should be followed while designing an RF layout:

● As often as feasible, high power amplifiers (HPAs) and low noise amplifiers (LNAs) must be separate. High-frequency RF transmitting circuits were separated from low-frequency RF receiver circuits by a large distance.
● On the high-frequency portion of the PCB boards, at least a detailed ground must be accessible, and through-hole must be avoided. The more copper foil surface area there is, the better.
● Circuit and electricity are both affected by decoupled in the same way.
● The distance between the RF output and the RF input must be as large as possible.

Those circuit boards are made to work at moderate and incredibly high frequencies (megahertz and gigahertz). They should be made out of high-quality materials. Here are a few of them:

● RO laminates are made by Rogers.
● FR-4 High-Performance
● Hydrocarbons loaded with ceramics
● Woven or tiny glass fibers in PTFE

Particular properties of materials include a low optical tangential, a low dielectric (Er), and outstanding Coefficients of Thermal Expansion (CTE).

PCB Requirements for RF Radio Frequency

The RF PCBs have dielectric thicknesses of 0.1 to 3.5mm and are available in copper with weights ranging from 0.5oz to 15oz with UL certifications of 80z. With a minimum line width and spacing of 0.075mm, they have a thermal capability of 0.82 W/mK.

It can build the best-fit solutions for your important RF electronics product using our comprehensive understanding of accessible RF substrates, driven product development, and long-term product sustainability.

Purity PCB could assure that all price objectives and budget were reached through early coordination, future ensuring your RF board products to the least potential price point, with a proactive and challenging attitude to costs monitoring.

Purity delivers the degree of reliability, reproducibility, and affordability to bring any RF Microwave Printed Circuit Board demand to fulfillment, from one-off prototype needs to producing a manufacturing suite of products.

Framework and Methodology of RF Circuit Design

Higher – frequency Printed Wiring Boards are required for applications such as network and communication (PCBs). Whenever these organizations approach PCB makers for a solution, the manufacturers typically suggest Radio Frequency (RF) or microwaves PCBs. PCB makers recommend these PCB assemblies for information and telecommunication application for a variety of reasons. Let’s have a glance at certain fundamentals.

Physical segmentation and electronics separating are two types of partitioning. The first is primarily involved with the part arrangement, orientation, and shields, whilst it is divided into power systems, RF routes, sensitivity circuitry, signaling, and ground partition.

A. Concept of Physical Partitioning

The principle of element design:

Components design is critical to achieving a successful RF system. The most efficient method is to first fix parts along the RF line and have their orientation changed so the RF route may be minimized with input far enough from outputs and low – and high circuitry segregated as much as feasible.

The principle of PCB laminating

A most effective method of Circuit board fabrication is to place the primary surface on the two layers beneath the first planes and the RF traces on the first layer. The diameter of the RF route via holes must be limited.

The idea of RF tracking and RF parts

The design of RF tracking and RF parts Linear circuitry such as multi-stage amplifiers can separate all RF regions within the physical environment, but duplexers, mixers, and mid-frequency amplifier/mixers frequently cause mutual interfering among several RF/IF channels. As a result, this form of influence should be avoided at all costs. Crossing RF/IF traces and leaving a grounding around them is recommended. The proper RF routing is critical to PCB efficiency, hence why components layout takes up the majority of the design effort in cell phones.

B. Principles of Electronics Partitioning

The concept of transmitting power:

Because the DC in most mobile phone circuits is usually relatively low, tracing width isn’t an issue. Tracing with a high flow and as broad a breadth as feasible, on the other hand, should be constructed separately again for energy availability of quality amplifier to keep transmission voltage to a minimal. Numerous through apertures must be used to transmit energy from one plane to the other to prevent massive power losses.

High-power systems’ energy decoupling:

If perfect couplings at the supply pins of a high-power amplifier are not accomplished, high-power noises would be emitted throughout the boards, causing numerous problems. Grounding is critical for high-power amplifiers, and a metal shielding covering is frequently required in their designs.

The concept of RF input/output separation:

For most cases, it also is critical to ensure that RF outputs are far from RF inputs, this applies to amplifiers, bumpers, and filters. In the worst-case scenario, self-excited vibrations may result if the amplifiers and bumpers inputs are restored to respective input terminals at an acceptable amplitude and phase. In ideal circumstances, they would be able to perform reliably at any voltage and temperature. In reality, they could become unstable, causing noise and interference signals to be added to RF transmissions.

Overall, because of its spread variable circuits, RF circuits have skin impact and coupler impact, which distinguishes them from low-frequency circuits and DC. As a consequence, the difficulties highlighted above should be given extra attention during the designing of RF circuit PCBs to ensure that the circuit is both precise and efficient.

Advantages of RF Microwave PCB Applications

Along with its multiple evident advantages, RF PCB has seen the quickest development. The following are a few of the numerous advantages:

Quick operating ability:

Because RF PCBs operate at such a high frequency, they can effectively provide the signals in the circuits in a short period. The total gadget can work faster than ever before due to the obvious quickest connectivity among the materials due to speedy information transit. As a result, smartphones, aeronautical devices, and other RF PCB products can operate in a matter of seconds.

Multi-layered board:

RF PCBs can be used in circuits with various layers based on the stack-up from the PC Board manufacturer. This ability to stake out allows people to work at their best. Multi-layered circuits have high densities that allow them to fit into a tiny device. It also minimizes the circuit’s likely weight and making it more convenient to use.


Several layers The PCB kind of RF is a significant influence in lowering the circuit’s costs. The price of the circuits constantly decreases as the weight and size of the circuits decreases.

Pitching element placement:

The finer-pitched materials of the circuits may be easily placed just on RF PCB due to its sophistication. This is critical to remember while beginning the process.

Strong Sensitivity Strength:

Among all the positive aspects of the RF PCB, its high-temperature stress endurance energy is overlooked. It’s a boon for industries that work in high-temperature conditions. Any regular PCB would fail to work in such a hot environment as found in the army, airline, and automotive sectors, but RF PCB, with its extreme sensitivity capability, is just like a ray of sunshine in those domains.

At PNC, you can get your RF microwave design or PCB Assembly requirements fulfilled. Just Email us at sales@pnconline.com.

How To Choose High-Frequency PCB Board Material For Your RF Microwave Project

How To Choose High-Frequency PC Board Materials For Your RF Microwave Project?

The high-frequency PCB material is based on using a synthetic thermoplastic fluoropolymer which has an excellent dielectric property at different smaller microwave frequencies.

For the design of PCB circuits with microwave frequencies, important characterizations that determine laminate circuit performance include dielectric constant (DK), dissipation factor (Df), thermal expansion coefficient (CTE), thermal dielectric constant coefficient (TCDk), and thermal conductivity. The most known high-frequency material for users of PCB laminates may be polytetrafluoroethylene (PTFE), a synthetic thermoplastic fluoropolymer with outstanding dielectric characteristics at microwave frequencies. PCB applications include RF antenna, WiFi (Carrier-Green and Licensed Access), IP infrastructure, power amplifiers, diplexers/multiplexers, testing, measurement, etc.
It is essential to have considerable expertise in manufacturing PCBs with these materials using PCBs produced from these goods.

Different High-Frequency PCB Materials and their Characteristics:

Choosing a circuit material for a PCB is usually a compromise, frequently between price and performance. However, Printed Circuit Board materials are also chosen by two important factors: how well they suit the requirements of a final application and what work is needed to build the desired circuit with a certain material. These two variables may not mesh: one material may be suitable for a specific application but may provide difficulties in producing a circuit and vice versa.

However, by relying on concrete criteria intended to assess the appropriateness of the material for circuit manufacturing and to satisfy the requirements of an application, the process of choosing a PCB may be simplified for a specific application. The method will be illustrated using some of the most common high-frequency PCB materials, each of which reflects manufacturing characteristics and end-use compatibility.

For various applications, it is advisable to use FR4 material with defined layer buildup as required during the design. Additionally, the processing is faster with such material having improved dielectric properties. These also have lower dielectric constant, frequency, and temperature-independent along with lower loss-factor. There are high glass transition temperature, lower hydrophilic rate, and excellent thermal durability are considered as additional favorable properties.

The PTFE and Rogers materials are typically used for impedance-controlled higher frequency circuit boards. There is also the possibility of executing the design with the material combinations sandwich buildups. For achieving the higher frequency provided from the desired PCB type, there are special materials required and there are numerous substrate materials present which particularly support the design and could differ relying on signal speeds needed along with the circuit board application/environment.

The FR4 is the least expensive when comparing it with other high-speed dedicated materials in terms of pricing and Teflon is the most expensive. However, in recent times, it was noted that the FR-4 started to drop off in performance as soon as the signal speed edged higher than 1.6GHz. When it comes to Df, Dk, survivability in the environment, and water absorption, the newer generation substrates are the best choice.

There are newer generation substrates that can typically be used when the printed circuit board requires frequency above 10GHz. These substrates include Flex and Teflon as the best option since these have higher superior properties when comparing it with the traditional FR-4 material.

The high-speed substrates common supplies included Isola, Taconic, Dupont, Rogers, and Megatron materials. These materials typically have a lower loss and lower DK.

How to Choose High-Frequency Material to Solve Fabrication Issues?

A variety of mechanical procedures are necessary for the production of high-frequency PCB materials. In general, plated-through-hole (PTH), multi-layer coating, and pcb assembly were the most important. The drilling procedure usually involves creating clean holes that are metalized subsequently to create troughs for the electrical connections from one conducting layer to another. Some issues related to the drilling process include smear, burring, and fracturing. Smearing may be fatal to PCB manufacturing using a PTFE-based material because the smear cannot be removed. Fracture of certain nonwoven glass hydrocarbon materials may be deadly.

However, this is not the case for most woven glass hydrocarbon materials. The PTH preparatory procedure is reasonably easy to specify for most non-PTFE materials, but PTHs for PTFE-based materials need specific processing. Ceramic-filled PTFE-based materials provide more forgiving PTH preparation choices. Non-ceramic PTFE materials need a specific procedure that may restrict final circuit outputs. Manufacturing multi-layer PCBs is challenging. One is that different materials frequently are linked together, and these different materials may have characteristics that hinder the operations of drilling and PTH preparation.

In addition, a discrepancy between certain material characteristics, such as the CTE thermal expansion coefficient, may cause dependability issues when the circuit is heat strained during assembly. The material selection procedure aims to identify a suitable mix of circuit materials for multi-layer PCBs that allow practical manufacturing and fulfill end-use criteria. Designers and manufacturers are provided with a wide range of materials to join the copper laminates that eventually form a multi-layer Printed Circuit Board.

The materials vary in dielectric constant, dissipation, and processing temperatures, as shown in Table 2. Lower lamination temperatures should generally be chosen. However, when a PCB is soldered or any other kind of heat exposure, it is required to employ a high-reflow (re-melt) bonding material that is thermal resistant and does not reflow at high processing temperatures.

HF Materials to Match CTE, DK, and DF Properties:

Di-Electric Co-efficient (DK)

Make sure the substratum is composed of DK-like friendly materials.

Thermal expansion coefficient (CTE):

For materials, CTE is perhaps the most critical thermal feature. If the substrates contain distinct CTE elements, they may grow at various rates throughout the manufacturing process.

How to Choose High-Frequency Materials on Product Needs?

Many best practices are available in selecting the appropriate substrate and foil for your application in high frequency.
• Match Dielectric Constants – If you want a personality match, you want a Dk match on PCBs. If your PCB substratum is composed of resin and woven material, various Dks may exist. Non-uniform Dks will create issues in your substratum. You must verify with your manufacturer to ensure that you obtain as near as possible to all of your substrate Dks.
• Match Thermal Expansion Coefficient (CTE) – There are many temperature-related substrates properties. The CTE of your substratum component may influence your Dk. If your substratum components have varying CTEs, they may expand at various rates throughout the production or operation of the circuit. It may lead to problems in the manufacture of PCBs. During operation, the physical shape of the substratum may be changed and Dks not uniform. It leads to a broken connection in love.
• Tight Substrate Weave —The woven portion of your substratum must likewise be narrowly meshed. A loosely woven substratum causes different Dks to be killed.
• Don’t use FR4 —It would help if you also utilized a low-loss substratum. Some individuals still use FR4 for their high-frequency circuits, though. FR4 is not a suitable material for applications with high frequency; use anything else.
• Use the beauty of a smooth foil, and it is seemingly just skin-deep. A smooth copper foil ensures reduced resistive losses at the highest frequencies.
• Use a Conductive Foil – If your skin depth is low, make sure you’re not using weak conductors to complete copper. The current passes through these weak drivers and creates a poor circuit.

Final Thoughts

Various RF PCBs and microwave PCB applications are multi-layer businesses. By combining various materials, board characteristics may be fine-tuned to enhance electrical performance, thermal qualities, and cost balance. Composite boards, commonly referred to as multi-layer hybrid PCBs, may be challenging to compile since various PCBs’ production stages have to take care of many layer-to-layer interactions.

There are also other difficulties, like the PC Board mixed-signal design, which mixes analog and digital components, creating many variables. The future is certainly bright, with so many present uses and new markets for RF PCB’s and microwave PCBs. However, RF boards are complicated and must include numerous variables and show unique behaviors that are not communicated with their lower frequency relatives. It’s not “dark magic,” but it may be difficult.

Interested to know more about High-Frequency PCBs? Just write us at sales@pnconline.com

What is a Gerber Viewer in PCB Design

What is a Gerber Viewer in PCB Design?

Gerber Viewer

A Gerber viewer is any software application that enables you to examine the contents of a Gerber file. While some of these applications need installation, others are available online and do not require downloading or installation. All you have to do to see your Gerber files online is upload them.

Gerber files

Before the establishment of Gerber files, there were no industry-standard guidelines for manufacturing printed circuit boards (PCB). The papers that included the Printed Circuit Board requirements contained a diverse range of information. There have been many instances of miscommunication and misunderstanding between consumers and manufacturing firms. Finally, universal interoperability across PCB designers and manufacturers has been achieved with the introduction of the Gerber format. In order to work with a file format independent of the CAE/CAD program being utilized, it allows the latter.

After the project has been finished and adequately monitored, it should be sent to the manufacturer. The designer may transmit securely, with prior permission with the business, any Gerber files generated by the export feature. Even though many applications automatically export to this kind of archive, all documents may be compressed in one zipped file. Many firms accept just one compressed file. Testing and checking your files with various Gerber viewers is usually intelligent practice before sending them to the producer. It is a great technique to be followed by all designers.

The Gerber format

These are vector documents consisting of a series of instructions that create a visual object flow. The directions for making the hole on the PC Board are also included. Nowadays, businesses that manufacture printed circuit boards need clients, nothing else. The essential program for electronic design contains and allows the export of the whole work to this format. It is thus the first thing an electrical designer should look for in his CAE program.

pc board

The standard format now used is RS-274X. It’s an extreme version in the same document as it contains:
• the draw and flash commands
• the XY coordinates
• the openings
• the configuration parameters

Versions of Gerber Files

Nobody needs to order a delayed printed circuit board (PCB). Ideally, you submit your design file to the PCB maker, and then the manufacturer organizes the manufacturing of the board based on your file and sends goods to you. However, the actual issue is not so easy. It typically takes such a long time since you submit your designed file to the final arrival of your board. Your discontent with your PC Board manufacturer will grow with increasing turn-time.

You may do a lot to reduce this time from your viewpoint throughout the whole process. After all, efficiency and efficiency are your responsibility. As connectors and translators for PCB engineers and PCB manufacturers, German files serve a crucial role in allowing manufacturers to understand design engineers’ thoughts and ideas. Excellent and dependable products may be produced successfully and efficiently. There are now three Gerber format versions available:
• Gerber X2 – the latest Gerber format, including stack data and characteristics
• RS-274-X – an extended Gerber format version and extensively used.
• RS-274-D – Gerber’s oldest version, progressively replacing RS-274-X.

Over the years, the Gerber file format has seen numerous modifications and upgrades. Thus Gerber files have been updated in many versions. The earliest version, also known as RS-274-D, is Standard Gerber. It is mainly out of usage today, and standard Gerber files are not acceptable on the official website of Gerber. Gerber is extended to include RS-274-X, commonly known as X-Gerber. Extended Gerber was introduced in 1998 and is a human-readable ASCII format. The previous format has been enhanced by incorporating information in graphics and pictures. Gerber’s latest version is Gerber-X2, an expansion of Gerber-X. It is compatible with most CAM programs and enables the user to add file characteristics.

These characteristics are like labels that offer picture file information and features. It also simplifies the transition of PCB designs from CAD to manufacturing. UCAMCO has just launched another version named Gerber X3. While not extensively utilized, UCAMCO believes that its interoperability with other applications and simplicity of installation will become the new norm.

Gerber Files Generation

PCB engineers should never be too indolent to create their Gerber files for the following two reasons. You cannot be sure that the PCB software you use is the same as the software used by your PCB Manufacturer. You must create Gerber files yourself if your PCB producer utilizes various PCB software, and additional discussion and validation will certainly cause extra time and delay the manufacturing process.

Although PCB manufacturer utilizes the same PCB design tools, it is still advisable to create Gerber files yourself since differences in software applications may also lead to potential mistakes. PCB design engineers should thus learn to create Gerber files themselves in order to guarantee delivery speed and reliability of end products.

Gerber files typically include driver layer, solder mask layer, and silkscreen layer design data. In addition, Gerber files should still be produced to prevent potential misunderstandings in two levels with the same design data. Distinct PCB design software has different Gerber file generating operation procedures.

Converting Gerber Files

Depending on the circuit design software you choose, you can generate Gerber files. There are many of these applications. However, some of them are popular with Proteus, Altium Designer, and CircuitMaker. Eagle is also one of the simplest to use. You will have to change your approach to various programs, but here are basic principles. Created by a firm called Gerber, Gerber’s format now includes standard PCB software that is generally recognized, capable of defining board imaging conditions, such as driver layers, solder mask layers, and legendary layers. The printed circuit boards are intended to produce additional board manufacture information based on which board production is started, using a specialist EDA system (Electronic Design Automation) or a CAD system (Computer-Aided Design).

PCB producers will not completely grasp all PCB design file specifics unless it includes the Gerber file as reference and guidance. For each picture of a circuit board, the Gerber format file is applied and may be used for both manufacture of bare boards and the assembly of PCB. For bare-board production, Gerber format is required by conventional photoplotters and other factories that want image data such as legendary printers, direct images or AOI devices, etc.

Simply stated, Gerber files format must be dependent from the beginning to the conclusion of the PCB manufacturing process. In connection with PC Board assembly, a stencil layer is included in the Gerber size, and component positions are controlled, which is also considered as important reference data for the assembly, assembly, and combinations of SMT (Surface Mount Technology).

You need to load your board to the design programme of your circuit. Sometimes this process is easy, but sometimes certain export parameters need to be adjusted. You must next utilize the CAM processor to convert your data to Gerber files. The duration of this procedure varies significantly depending on the size and complexity of the board.

Once you have completed your CAM processor, you will have a set of files labeled with the name of your board but various extensions. You must compress and submit your layer files, drawings, box guidelines, and inside layers to the PCB maker. In order to generate the required Excellon files, you must typically return to the CAM procedure.

Now that you have your Gerber file, maybe your question is how to convert a Gerber to PDF? You will need to locate an online service or application to convert Gerber files to PDF files. Many of these applications are online and do not need your computer to be downloaded or installed. Just upload and wait for the software to convert your files.

Example circuit diagram

The figure below, along with the 3D construction, illustrates the transistor amplifier wiring schematic. It is a promiscuous project, some of them in SMT with discreet components. The project contains elements, words, images, components, and more.

Example circuit diagram

Final Thoughts

Gerber Viewer Software for Windows is a software program that allows you to read and examine Gerber files (GRB files) using its comprehensive toolkit. Some of these applications are also the software for the Gerber editor so that you may examine and modify Gerber PCB designs. The program may export the file viewer in different formats, such as SVG, PDF, PNG, PDF, JPEG, etc. If you wish, you may also print out the design.

PNCONLINE equipped with big and sophisticated machinery, are used CNCs may accomplish the more advanced versions are devoted to a particular operation or all jobs simultaneously. These machines start producing PCBs instantly without being linked to a computer and also can interpret Gerber client files directly thus equipped with processors. Other kinds of equipment, always in accordance with the Gerber requirements, can conduct circuit controls and automated optical inspections (AOI).

Interested in getting your PCB design done on an urgent basis in New Jersey? Get it done at PNCONLINE.

Contact us at sales@pnconline.com

Lead Vs lead-free soldering for PCB assembly

Lead Vs lead-free soldering for PCB assembly

What is soldering?

Solder is the name for bonding metals. Soldering is a crucial aspect of the electronics industry, as it is the basic method of connecting electrical equipment to a PC Board. You have to heat the metal at a high temperature and join the parts, and then it will create a perfect electric connection between them when it cools.


Differences of leaded and lead-free soldering

Another distinguishing feature is the difference in moisture content. Wetting refers to how well-molten solder paste adheres to the board’s components on the Printed Circuit Board. Solder that has been improperly wetted appears grainy and dull. When using lead-free solder, wetting takes longer and results look dull. Traditional lead solder connections, on the other hand, are usually gleaming and spotless. Inadequate wettability is hazardous to a PCB’s joints. It causes poor joint performance and high circuit board rejects rates.

Changes in melting point:

Lead and lead-free solder perform differently in terms of performance. The melting point difference is the first distinction. Lead-free solder necessitates the use of some of the most extreme iron temperatures. It would be best if you were prepared to wait extended dwell periods due to the high melting points.

Various ranges of temperature:

There is a performance difference between the two due to the differing relevant temperature. High soldering iron temperatures are required for lead-free solder. When it comes to lead solder, however, this is not the case. In comparison to lead solder, lead-free solder requires somewhat higher remelting temperatures.

Raw material:

The raw materials are the essential distinction between lead and lead-free soldering. Flux is used in the creation of both of these items. The addition of lead solder paste is referred to as a lead change. However, when lead-free solder paste is added, it is referred to as lead-free flux.

Uses are different:

The difference in usage is the next distinguishing feature. Lead solder is frequently used in hobbyist projects. These projects are exempt from the RoHS regulations. On the other hand, lead-free soldering is required for major projects that must adhere to RoHS regulations.

Different appearance:

The look of lead-free solder junctions is grey, harsh, and uneven. The majority of leaded solder junctions, on the other hand, are bright and neat. They have a refined and gentler appearance. Lead solder is also somewhat heavier than lead-free solder in terms of density. Lead-based solder weighs 8.5 gm per square meter, while lead-free solder weighs 3.5 gm per square meter.

Advantages of lead-free solder

Due to the dangers of lead, lead-free solder has become common in electronic businesses and manufacturers. In the electronics sector, the Restriction of Hazardous Substances directive (RoHS) went into force, banning lead in consumer devices manufactured in the E.U. Manufacturers in the United States may be eligible for tax breaks if they reduce their usage of lead-based solder. The use of lead-free solder was generally accepted before lead-free solder being common in consumer-produced products. Almost all electronic assemblies were built to survive the usage of lead-free solder and the temperatures needed for manufacture.

Many users were fearful that lead-free solder would not last besides lead-based solder and those goods would fail. Because its characteristics are less well understood, lead-free solder might be not so much attractive for sensitive programs like aerospace and innovations in the field of medicine. We’ll see whether lead-free solder stands the test of time as it becomes increasingly popular and needed.

The decision of lead-free materials for wave soldering or through-hole soldering is based on the final completed PCB assembly unique design specifications and product demands. Even though lead-free soldering requires extreme temperatures, careful board architecture and material selection will be critical to avoid metal decomposing or harm critical electrical parts. This is particularly true throughout reflow when heat waves exist for long periods.

Disadvantages of lead-free soldering

Compared to leaded soldering, it needs low temperature to melt. Lead-free soldering requires high temperature. It needs around about 217°C/422°F temperature to melt. Electrical devices and PCB materials must be able to endure extreme heat.

Hard to handle:
Though lead-free solder operates perfectly there are several instances when lead solder beats lead-free solder. To begin with, lead solder is quite simple to work with. Even if a child ingests or consumes it, the poisonous substance is absorbed by the body.

Surface energy:
The absence of surface energy is perhaps the most significant disadvantage of lead-free solder. External pressures cannot be resisted by lead-free solder. The components may easily fall off if exposed to severe conditions.

Soldering irons with high wattage:
When lead solder is used, there are fewer quality issues with the head Soldering irons with high power are required for lead-free soldering. You may injure your head as a result of this. Again, this may lead to problems with your board’s quality. When you select lead solder, however, this is not the case. You may need to remove the head fast because of the high soldering temperature needed for lead-free soldering. When the use of lead soldering, however, you can prevent such a situation. This is something that many circuit designers are aware of.

Pcb Assembly
Pcb Assembly


Get it done at PNC Inc. Just contact us at sales@pnconline.com

What is a Keyboard PC Board

What is a Keyboard PC Board?


As all other things are the same, a plate-assembled keyboard is more robust than a PCB assembled keyboard and has a stronger feeling. The overall quality of the keyboard and its case play, too, although it differs from a plate of aluminum or steel between the typing of a laminate sheet (PCB). (It’s possible, but very rare, to have a plastic plate on a mechanical keyboard.) In contrast, the PCB-mounted keyboards usually have a bouncer key feel and a more flexible case and creakiness. It is safe to say that plate-mounted keys are generally more high-quality than PCB-mounted keyboards, although not all of them like to feel. Some people like to give extra in PCB-mounted keyboards.

pc board
pc board

Kinds of mounting styles

There are two kinds of mounting styles when purchasing switches for your mechanical keyboard: PCB mounted and plate mounted. It may be difficult to determine the distinctions, so let’s clarify what they imply. PCB-assembled switches have five pins, whereas plate-assembled switches have three pins. By cutting off the extra pins at the bottom of the switch, you may convert the PCB mount switch to fit a plate mount.

What is a PCB-mounted switch?

Since there are a total of 5 components to the bottom of them, PCB-mounted switches are 5-pin. Look closely at the base of the PCB-mounted switches, and you will discover a total of 5-pin switches. The five pins consist of 2 plastic pins on the edges, which provide the switch rigidity, two metal pins, and a “pin” in the middle, which appears more like a circular or big handle. The switches, as illustrated below, may be soldered to the PCB and installed easily.

By using two metal pins on the sides and two plastic pins, the switch operates, thus giving stability, and one center “pin” appears more like a big round button. To assist the Printed Circuit Board in attaching, the switches additionally include guide pins. In this kind of installation, the keys tend to bounce a little more as well as often have a lighter feel. As they are less flexible and need less structure to stay together, the PCB mounting method is utilized with smaller keyboards in general. However, having a plate is quite prevalent in contemporary boards. Besides soldering quality determines the stability of the switches, you may opt to construct a keyboard without a plate.

Pcb mounted switch
Pcb mounted switch

As far as PCB-mounted switches are concerned, there are guide pins that assist install the switch on the PCB. The keys may jump back a little more, and this kind of assembly usually has a lighter atmosphere. This amount is mostly used in a tiny keyboard since it requires less structure and less flexibility. Nevertheless, a plate is very common in the present board. Soldering quality determines the stability of the switch, without a plate you can easily build a keyboard.

Plate-mounted switch

They are called Plate-assembled switches as they need a plate. At the base, it contains just three pins, the two metal pins, and the center circular pin. They do not have stable pins. This is where the plate enters. The plate stabilizes every switch and reduces swaying side-by-side when the key is pushed. It is constructed with a plate since the stabilizing pins are not available.

Plate-mounted switch
Plate-mounted switch

Plate-Mounting VS PCB-mounting

When the key is pressed down (as shown below), after placing the switches on the metal plate, they are soldered to the PCB. The plate enables the keyboard to seem stronger and sturdier with a heavier sensation.

Plate Pcb
Plate Pcb

The switches must be installed on a metal plate that is placed on the PCB with regard to plate installation at the time of PCB Assembly. Following installation in the metal plate, the switches were soldered to the PCB. In order to become stronger and sturdier with a harder feel, the plate enables the keyboard. In order to provide additional support, these are used frequently in a larger keyboard since the keyboard is bigger and more flexible. To preserve things better, the plate also provides more solidity to the keyboard.

A key difference among plate-mounted PCB-type switches is that as they are mounted on the plate instead of the PCB, they do not need additional guiding pins. Just note, when the switches are soldered, the plate will be hard to pull off. You should remove it and solder it back to your PCB. It should be removed. This will probably not be beneficial if you wish to make adjustments and modifications.

While noticing the number of pins on the bottom to examine the major differences between a plate-mounted and PCB-mounted switch. There will be five pins on the PCB-mounted switch, whereas three on the plate-mounted switch.

The plate is typically extremely durable and of higher quality. Since it makes the key more solid and less harsh, some people like the feel of this mounting technique. Due to the additional components and assemblies, this design is typically more costly. There are two mounting styles of mechanical keyboard switches: mounted on a plate and mounted on PCB. The difference may be difficult to sort. Therefore we will explain both changes in this post more fully. The platform-mounted switches have just three pins; the platform-mounted switches have five pins. By removing extra pins on the bottom portion of the switch, you can convert PCB-mounted to fit with plate-mounted switches. In this article, we will show you to suit your board to modify the switches and explain the difference between various kinds of switches. These plates are frequently used to support bigger keyboards because the additional size makes the keyboard more flexible. The plate also provides additional stiffness to the keyboard and helps to secure everything.

3-Pin Vs 5-Pin Switches

Firstly, if you utilize switches without a plate, your switches have less bolster at that point. The keyboard seems shakier and less stable because of the lack of support. You might need to put a plate on your keyboard if you are a heavy-handed keyboard user or want to have a permanent keyboard experience.

In general, the PCB-mounted design needs no additional supporting plate. Thus the building is less expensive and simpler. They mostly carry 3-pin switches on many hot-swappable boards. It may be helpful in such a situation with 3-pin switches. If you produce a bespoke keyboard, it’s carefree because you may choose whatever PCB you are using. You have to put them in a 3-pin PCB; it is not difficult to make them appropriate whatever you buy 5-pin switches.

As we have already established, the main difference between 3 pins and five pins is that of total pins. With either a fingernail cutter, tissue cutter, a nail trimmer, or other normal equipment around the home, you may cut the two plastic pins side by side.
What is the meaning of the Keyboard Plate? The plate is utilized for extra support over the PCB, which makes the keyboard more stable and flexible. This component is usually not held by every keyboard. Thus, whether or not they have this plate, it can be known as the major difference between the two switches mounted.

Preferred Keyboard Choices

The ultimate option with your board is the keycaps. Like the switches, here you have a wide option, and whomever you are going with will ultimately be your taste for how they appear. By saying that, certain basic principles are useful to remember, notably, what type of plastic your keyboards make of and how they are printed (or “legends”).

Preferred Keyboard
Preferred Keyboard

ABS plastic and PBT plastic are your two major choices in terms of materials. PBT keycaps are usually somewhat more durable and will not wear off and shine as quickly. The disadvantage is that they are usually more costly.


In this article, we reviewed all the distinctions between PCB-mounted and plate-mounted switches. Whether they are five pins or three pins, these are primarily differentiated on the bottom of the switch by the number of pins. Since you can easily remove the additional plastic pins, the number of pins does not change too much if your PCB just installs the mounting method of three pins. We have also explained the PCB keyboards in the modern-day that helps in constructing a clavier using a plate vs a PCB mounting method, such as differing feelings, quality, and rigidity.

There are many PCB kinds, all of which provide a distinct typing experience and features that demonstrate how deep this interesting pastime is. A keyboard is connected to a PC. But both kinds of keyboards have their advantages and disadvantages. When you go to your local PC store, consider the differences between mechanical and membrane keyboards carefully.

Should you have any queries, feel free to contact us at sales@pnconline.com