Tag Archives: Circuit board fabrication

Metal Core PCB Design & Manufacturing Concepts

Metal Core PCB Design & Manufacturing Concepts

Metal core PCB consists of a layer of thermal insulation, copper foil, and metal plate, and you can also call it MCPCB. The basic benefits of metal core PCB include:

  • High magnetic conductivity
  • Great heat dissipation
  • Excellent mechanical strength
  • Easy processing

The base layer of the MCPCB is copper and aluminum, and you can choose to have any of them. Aluminum PCB is cheaper than copper, and you would find them in LED lights, mobile phones, and audio-frequency equipment. However, copper is better than aluminum in terms of performance. MCPCB was developed to overcome the heat dissipation issues occurring in high-power LED lights.

Things To Consider While Designing The Metal Core PCBs

The construction of the MCPCB stack-up depends on certain guidelines that we will discuss here. Such boards consist of a specific base layer, such as aluminum, copper, or even steel. You will have to determine the layer arrangement after selecting your desired metal and dielectric laminates. The type of the layer will determine other aspects, such as components and routing.
MCPCB has different types, depending on the number of layers as single-layer, double-layer, or multiple-layer metal core circuit board.

What Is A Metal-Backed PCB?

This Printed Circuit Board has a metal layer on its back, whereas the opposite layer has electric components. You can’t route traces on the back, however, through-holes are possible for routing between different dielectric layers, bringing ground to the metal substrate.

Metal Core PCB Routing

In the case of a double-side PCB, you can place through holes for routing between the metal core’s sides. You can use the multilayer dielectric stacks on the metal core’s sides to support different layers’ routing.You should ground the metal substrate for shielding, and to prevent it from acting as a monopoly antenna.

MCPCB Applications

Metal core circuit boards are ideal for aerospace and military industries that involve mechanical shocks, as well as high moisture and temperatures. So, MCPCB helps meet such requirements because they have a strong structure and a high thermal conductivity compared to PCB having an FR4. Such highly conductive circuit boards ensure an equal distribution of temperature when there is thermal cycling. So, it does not let the hot spots make closed components.
Metal core PCBs are also suitable for electric products which should work at high temperatures, such as high-current regulators, automotive electronics, and high-power LED lighting. The design of such applications depends on a precise stack up, and the board architecture should perform high at a low temperature.

Metal Core Printed Circuit board Fabrication Process

As there is a metal substrate in the stack up, such PCB involves a specific manufacturing process.You can use the FR4 dielectric in the case of a single-layer board by pressing the layer and bonding it to the metal plate.
If it’s a stack-up with a multilayer dielectric, you should first drill the metal core to have a layer transition independent of a short circuit. In the beginning, large holes are made and plugged with the insulating gels.Then, the gel has to be cured to make copper plating like a standard PCB. After that, you have to press and bond the remaining stack-up with the metal substrate. The stack-up needs through-holes followed by copper plating and residue cleaning.
The single-layer metal core circuit board has a metal base, copper layer, non-conducting or dielectric layer, solder mask, and IC components. Most thermoelectric separation applications consist of a COB or Chip-On-Board metal core circuit board,
It has two layers of copper conductor and both are on the metal core’s same side. Whereas the 2L MCPCB also has the metal core between two conductors, and designers call it a double-sided metal core circuit board.

Metal Core PCB Design & Manufacturing Concepts
Metal Core PCB Design

How to Select the MCPCB Components

It is essential to decide what components to choose when designing printed circuit boards as it can affect the final product. Such electronic components have different shapes and sizes, different power consumption specs, weights, and several other elements.
If you know how to choose PCB components efficiently, it can prevent big mistakes during design. We will help you in selecting the right components for your metal core PCB design.

You have to use certain design software tools to source the MCPCB components. These tools are necessary for all types of circuit boards, including a board with FR4, a rigid-flex circuit board, or a metal core board.
The surface mount technology is suitable for placing the components because it involves a minimum shorting to the metal substrate.You can also use the through-hole components,but you have to be careful to ensure that the solder mask does not get damaged on the back of the metal-backed PCB.
PCB fabrication involves multiple steps and the right design can enhance this process, preventing unnecessary design revisions.The manufacturer should have all documents having the fabrication details of the MCPCB.
Other than using metal cores, some passive techniques also help keep a circuit board cool through thermal management.

Designing MCPCB In A Closed Environment

The design of a multilayer PCB can become complex without compatible design software. You require the layout design tools for precise placement of the components, vias, routetraces, electrical, and thermal load crosscheck, etc.
You must have a good library of materials while designing the MCPCB. Likewise, the PCB layer-stack manager is required to handle your board’s structure. A suitable stack-up manager helps you to design a stack-up with an appropriate placement of the metal core, be it symmetric or asymmetric. Once the dielectric layers are defined, you need some groundwork for route traces and components’ placement.

Choosing The Design Software For PCB Layout

Different software help develop the PC Board layouts but make sure to choose the suitable one such as Altium. It helps you to have very precise CAD features to place the components. It also makes routing simple through special routing tools, whereas the layout engine helps ensure that the MCPCB is according to the design guidelines.
Remember that suitable software includes the 3-D design features to help you to design the complex mechanical parts of the MCPCB. You can also share your design with others through Altium 365, a cloud platform

Parameters of a Multi-Layer MCPCB

The design parameters of aluminum PCB sare described below.

  • Desired Aluminum thickness is 0.8-2.0mm
  • Solder resistance should be 288℃, >180 sec.
  • Breakdown voltage should be >3000v
  • The dielectric loss angle should be 0.03
  • Flammability should be UL 94V-0
  • Thermal conductivity should be 1.5W and 2.0W
  • Peeling strength should be >9lb/in

The minimum drilling diameter should be 1 mm in the case of an aluminum core, and the final diameter can be up to 0.3mm. There should be at least 1.2 mm spacing between the drill holes to avoid any damage.
Metal core PCB is also useful in several other areas having high mechanical loads where the dimensional stability should be high. Moreover, you can use it for electric vehicles, backlight units, automotive, audio systems, traffic lights, commercial buildings’ lighting, and solar panels.

Important Note

The digital devices depend on printed circuit boards for signals transmission to help them operate. These devices need a well-designed structure and manufacturing, but you have to encounter many issues in this case that we will discuss here. Circuit boards have different types and any issue in the design of a PCB would cause delays in its manufacturing, so you must know how to avoid them.


What is A Metal Core Printed Circuit Board?
Metal core PCB has a metal base, such as aluminum, copper, or steel of which aluminum and copper are common.
Which One Is Cheaper, MCPCB with Aluminum or Copper?
MCPCB with aluminum is cheaper than copper. But, copper is better in terms of performance.
How Many Types of Metal Core Circuit Boards are there?
MCPCB has different types, depending on the number of layers, such as a single-layer, double-layer, or multiple-layer metal core circuit board.
Where Can I Use The Metal Core Circuit Board?
Metal core PCB is also useful for electric vehicles, backlight units, automotive, audio systems, traffic lights, commercial buildings’ lighting, and solar panels.

Wrap Up

There are several benefits of metal core PCBs, such as high magnetic conductivity great heat dissipation, excellent mechanical strength, and easy processing. The base surface of the MCPCB is copper and aluminum, and you can choose to have any of them. Aluminum PCB is cheaper than copper, and you would find them in LED lights, mobile phones, and audio-frequency equipment. But, copper is better than aluminum in terms of performance. Metal Core PCB was developed to overcome the heat dissipation issues occurring in high-power LED lights.
The design of a multilayer PCB can become complex without compatible design software. You require the layout design tools for precise placement of the components, vias, route traces, electrical, and thermal load crosscheck, etc.
Would like to know more about Metal Core PCB or pcb assembly services? Email us at sales@pnconline.com

Microwave Printed Circuit Board Concept

Microwave Printed Circuit BoardConcept

A microwave circuit refers to any electrical or electronic device which operates on microwaves or uses microwaves for its operation. Some examples include radar systems, satellite dishes, cell phone towers, and TV antennas among others. Such circuits are designed to operate at specific frequencies or bandwidths so that they do not interfere with each other.
A microwave is an electromagnetic wave of frequency between 1GHz and 30GHz. It falls under the band B, C, D, and E in IEEE standards. Microwaves occupy a large part of the entire RF spectrum as compared to other frequencies. The global demand for communication devices such as routers, DSL, and mobile phones has increased significantly due to technological advancements such as internet connectivity being provided by these devices and advancements in technology by small-sized electronic components that can operate at high frequencies. As a result, there is an increase in demand for microwave circuit design services.
Microwave PCBs have to meet certain requirements that have not changed even though the designs have.

Understanding The Concept

So, what is microwave PCB? Simply put, it’s a pc board that incorporates circuitry optimized for frequency bands in which microwave signals are most commonly used. As the boards are designed specifically for such frequencies, they offer superior performance over traditional boards in terms of both design and reliability. Besides, their smaller size and lower overall weight make them perfect for use in applications where space and transportation costs are at a premium.

Microwave Printed Circuit Board Concept
Microwave Printed Circuit Board Concept

Why Microwave Technology?

The microwave portion of telecommunications is used for point-to-point voice and data communications. You can also use it for two-way radio, cable television, and telegraphy in a limited range of frequencies. As it allows information transmission at high speeds over long distances, it is very common in military organizations. For these reasons and more, microwave technology plays an essential role in today’s technological world.

As such, it was important that an efficient way to transmit microwaves be developed, the result was a device called a microstrip line. In short, when combined with other components, microstrip lines are what allow microwaves to travel great distances while maintaining optimal signal strength.

A microstrip line consists of three main parts, including a metal foil, dielectric material, and a ground plane. Metal foil serves as an antenna, and the dielectric material acts as a waveguide. Whereas the ground plane provides electrical shielding. These three elements are placed on top of one another and bonded together using heat or pressure, which creates a single unit known as a structure.

What Are The Factors That We Need To Consider While Selecting The Right Board?

Choosing a board for microwave design is not an easy task. There are several factors that we need to consider such as frequency, applications, and modes of use. There are three main types of boards, including through-hole, single-sided, and multi-layer boards. It is also very important that you pick out a board that matches your frequency range.
For example, you need a board with wider spacing between conducting tracks at higher frequencies than low frequencies. So, make sure that you select the right one depending on your frequency range.
The next thing that you need to look into is your application or project needs. Depending upon your requirement, you can go ahead with either through-hole or SMD-style component placement methods.
The final step in choosing a microwave PCB will be deciding on the thickness of the copper traces before the Circuit board fabrication process. You will have to choose according to your project needs whether thin or thick copper traces would be best suited for your application. But, keep in mind that thicker copper traces provide better current carrying capacity but they are more expensive than thinner ones. So, again it all depends on what kind of budget you have set aside for your project.
Every board has its unique features, so do check out every detail before buying one. A well-known feature of these boards is their ability to withstand high temperatures without getting damaged. This makes them ideal for high-temperature environments like ovens, motors, etc.
Another advantage of using these boards is their small size which makes them easy to handle and transport from one place to another. They also come with different pin configurations like double row, single row, and even no pin configuration options. Some of them also offer the ground plane on both sides which helps in reducing noise levels due to capacitive coupling.
In addition to all these advantages, most of these boards are made up of epoxy glass material that provides insulation against electric fields and other environmental factors.

Installation of Components onto A Microwave PCB

Let’s now take a quick look at how we can install our components onto a microwave PCB. First of all, get yourself ready by wearing safety glasses and gloves so that you don’t end up hurting yourself during installation. Make sure that you have gathered all the tools required for installation beforehand.
Next, remove any existing solder mask and protective coating from the surface of your board. Make sure that there is no dirt or dust present on it as well. If necessary clean it thoroughly with acetone and then wipe dry with a lint-free cloth or paper towel.
After doing so you can proceed to install the components onto it just like any other circuit board out there. Remember to always start with your smallest components first and work your way up to larger ones. Before soldering it is recommended that you apply a thin coat of flux on all surfaces where you are going to be placing your components. Then apply a little bit of solder paste on each pad and lastly place your component in position and heat it with a soldering iron.
Make sure that you inspect for proper alignment of your parts and if needed apply extra flux or reposition it until everything looks just right. Once you are satisfied with your results, it’s time to apply a generous amount of solder over all your components. Once you have done so, wait for it to cool down and that’s it.

How Do I Choose My Microwave PCB Manufacturer?

Before you start shopping for a company to make your circuit boards, there are a few things you should know. Here’s a quick rundown of some key questions you should ask yourself as you’re shopping around, such as:
• Does your board require special materials?
• Do you need services outside of just PCB manufacturing?
• How many layers do you need?
• What sort of electrical isolation is needed between high-voltage and low-voltage areas on your board?
• How much space will you need for mounting components?
Once you have answers to these questions, it will be easier to find a vendor that can meet all of your needs. Of course, in order to get accurate information from vendors about their capabilities, you may need to provide them with more details about your project than what we’ve provided here. They must understand exactly what kind of design you’re working with so they can give you honest feedback about whether or not they’re able to work with it.

What Is Hybrid Microwave Circuit

A hybrid microwave involves a thin film or thick film technology to construct different microwave circuits using a medium that can transmit signals. The medium, in this case, is mostly sapphire, alumina porcelain, ceramics of high level, or quartz.
There are two types of hybrid microwave circuits, passive and active. Passive hybrid circuits consist of passive elements like resistors, capacitors, inductors, and filters. Whereas active hybrid circuits use active devices like transistors, diodes, etc.
Active hybrid circuits have better performance than passive ones, but their fabrication process is more complex than passive ones because they contain semiconductor elements, unlike passive elements. Thus it is easier to fabricate passive hybrid circuits than active ones.
There are various factors affecting the microwave circuit design such as size, power consumption, cost of materials used, and the operating temperature. These factors must be considered while designing a microwave circuit.
Understanding the Lumped Componentization of a Microwave Circuit
A lumped component model is one of several techniques used to analyze and design high-frequency microwave circuits. It was originally developed for analysis and design in communication systems. It is characterized by using lumped elements (e.g., resistors, capacitors, inductors) instead of transmission lines or other forms of circuit elements whose behavior is dominated by distributed parameters like permittivity and permeability.
In addition to being useful for analysis, lumped element models are also useful for conceptual designs because they make it easier to visualize components and their interconnections. The concept of lumped element models is very similar to that of ideal transformers used in a single-sideband modulation. In this model, an ideal transformer represents an actual transformer with losses and non-ideal characteristics asleakage reactanceare replaced by zero values.
The equivalent circuit consists of an impedance connected between port 1 and the ground, plus a series capacitor representing the leakage reactance and shunt conductance. This technique is often referred to as lumped parameter modeling. Other examples include bridge networks used in an RF filter design and the current source inverters used in active filters.
Would like to know more about the Microwave PCB conceptor printed circuit board assembly? Email us at sales@pnconline.com

Design Elements Influencing SMT Assembly

Design Elements Influencing SMT Assembly

Smart devices should perform well to satisfy consumers who want high-density devices. The Surface mount technology or SMT helps develop high-end electronics. The process of SMT involves soldering which goes through different problems due to PCB pads, reflow technology, stencil design, quality of the soldering paste, and different technical parameters.
SMT manufacturing involves many challenges and different design elements influence it. The supplier needs Gerber files and design data for the placement of components. Gerber files help configure different SMT manufacturing machines and develop stencils for placing the solder paste on the circuit board. The manufacturer and designer should discuss the design parameters and elements for precise SMT manufacturing.
So, different elements affect the quality of SMT that we will discuss below.

Making Bill of Materials (BOM)

SMT has various features and BOM is one of them. The flow of soldering has close contact with the bill of materials. You have to consider the below factors to create a high-quality SMT.
• Components packaging should be compatible with mounting requirements.
• The component figure should be according to the SMT requirements to get the desired shape with precise dimensions.
• The PC BOARD pad soldering should be compatible with the reflow technology to prevent its oxidation and the same applies to the solderable ends of the elements. If these two factors get polluted, it would result in defective solderings, such as solder beads or pseudo soldering. The same is true regarding the humidity sensor and PCB administration.

Design Elements Influencing SMT Assembly
Design Elements Influencing SMT Assembly

PCB Pad Design

PCB design highly influences the manufacturing of SMT in terms of quality. According to HP research, 80% of SMT manufacturing defects occur due to the poor design of a PCB. So, the designer should focus on essential factors, including the folder mask, layout of components, type of the substrate substance, thermal pad design, assembly techniques, component packages, the position of vias, optical positioning, and the transmission boundary.
If the PCB pad design is poor, it would result in deflected soldering even if the mounting position is fine. Like, tombstoning or disposition of components can happen. You can avoid these issues by considering the key aspects while designing the SMT pad, such as the distance between the pads, residual size of the pads, width and symmetry regarding pads, and avoiding through-hole vias.

Printing of Solder Paste

The paste of solder should have a compatible printing technology, or it will affect soldering. A poor printing of solder paste results in a deflected PCB that you have to revise. During the printing of solder paste, you should consider three essential elements, such as solder paste, scraper, and stencil

Quality of The Solder Paste

Solder paste is an integral part of reflow soldering, and it’s a combination of alloy and flux. Precise soldering joints depend on the powder of alloy, whereas the flux removes oxidation from the surface to ensure high-end soldering. Even, the paste of solder having 50 percent of solder of alloy can be enough if it has high quality. Two key factors of soldering paste, including storage and application, determine its quality. Make sure to store the solder paste at appropriate temperatures ranging from 0 to 10 degrees.

PCB Stencil

The pad of the PCB should have evenly applied solder paste through a stencil, which is a major factor in Printed Circuit Board printing. Moreover, the eminence of the stencil affects the printing eminence. The stencil is designed through different techniques, including laser cutting, and chemical corrosion. You can design stencils by considering certain characteristics, such as:
• The thickness of the steel sheet
• Aperture design
• Mark points
• Anti-solder ball processing
• Direction of printing
• Type of scraper in terms of shape and material

Printing Parameters

You have to consider essential parameters of printing for precise results, such as frequency, scraper speed, scraper pressure, stencils down release speed, and its cleaning mode.
Both pressure and speed of scraper should be well-balanced, like not so low or so high. If these values are not balanced, it would result in defective printing, thus influencing the manufacturing.

Right Equipment

There should be accurate equipment to have high-level printing of the soldering paste. A small space and high-density PCB should follow the right printing rules for a stable process.

Understanding PCB Support

The printing of the soldering paste depends on the PCB support, as its lack can result in an uneven soldering paste. So, it is important to have uniform PCB support to keep the PCB and stencil close enough.

Components Mounting

The mounting of the PCB parts or components depends on different elements, including the right pressure for mounting, the quality of the components, and their precise location. Components should be according to the BOM, and mounted on the PCB at the right place, following the right dimensions. At the same time, the mounter should be precise in this case to ensure a stable mounting of the components onto the PCB pads.
The mounting angle should be correct, besides, the mounting pressure should be suitable, like not too high or low. You can evaluate mounting through different elements, such as the thickness of the board, components’ package, mounted z-axis, and nozzle’s pressure.

Quality of Reflow Soldering

The temperature curves of the reflow soldering should be well-set to have high-quality soldering of areas to be welded. An increased temperature can affect the PCBA due to heat occurring at a fast rate. It would cause PCB deformation, damaging the components. Besides, the soldering paste has a solvent that gets volatile, splashing out the metal composites as tin’s plating balls. Engineers apply nitrogen reflow soldering to get rid of oxidation, enhancing the quality of soldering.
Moreover, make sure that the reflow soldering is compatible with the PCB substrate, size, material, weight, and thickness. Besides, it should be according to the reflow oven’s structure, and the temperature zone’s length should also be considered.
SMT assembly is easy to optimize by having the best PCB design and software to analyze it. The right design software helps you to set assembly standards without missing any factor.

Additional Information

The solder paste is applied to the pads through a machine by holding the stencil tightly on the PCB. Then components are placed according to the footprints with the help of optic technology. The engineers inspect the placement of the components through an optic machine to make sure it’s free from flaws, and this should be done before reflow soldering. Sometimes the x-ray technology is used for inspection which is essential before PCB testing. Such inspection helps detect poor solder joints, as well as short circuits that happen during the reflow soldering.
The placement machines are unable to hold a PCB if the PCB edge is crowded with components, and this can influence SMT manufacturing. You also have to consider the tooling strips for miniature PCBs. The tooling strips should be at least 6 mm to help a machine have a proper grip during the PCB assembly. You can also give the V-score on the tooling strips to separate the parts easily in the later stage.
Keeping the SMT components in one direction can also reduce the flaws and helps have placement the components in one go. So, the selection of the components and their placement affects the SMT assembly, making it smooth or horrible.

Frequently Asked Questions

What is PCB?
PCB is an abbreviation of Printed Circuit Board. It is used in electrical devices to provide them with signals or currents to operate. Printed circuit boards are used in different industries, including networking, electronics industry, gadgets, aerospace, and much more.

What is SMT in PCB?

SMT stands for Surface mount technology, and it helps develop high-end electrical devices.

What is Soldering in PCB?
Soldering is a manufacturing technique in PCB where two metals are connected through another material’s fusion. It should be precise because poor soldering results in a device malfunction.

What Are Important Characteristics Of A Stencil Design In PCB?
Stencil design depends on certain characteristics, such as the thickness of the steel sheet, aperture design, mark points, anti-solder ball processing, the direction of printing, and the type of the scraper in terms of shape and material.

Final Thoughts

Smart devices should perform well to satisfy consumers who want high-density devices. The Surface mount technology or SMT helps develop high-end electronics. The process of SMT involves soldering which goes through different problems due to PCB pads, reflow technology, stencil design, quality of the soldering paste, and different technical parameters.
SMT manufacturing involves many challenges and different design elements influence it. PCB design highly influences the manufacturing of SMT in terms of quality. According to HP research, 80% of SMT manufacturing defects occur due to the poor design of a PCB.
The PCB designer should focus on essential factors, including the folder mask, layout of components, type of the substrate substance, thermal pad design, assembly techniques, component packages, and the position of vias, optical positioning, and the transmission boundary.
Like to know more about the Design Elements or PC Board Fabrication? Write us at sales@pnconline.com

Printed Circuit Board Signal Conditioning Process

Printed Circuit Board Signal Conditioning Process

The process of data acquisition is known as signal processing. This acquisition is done by an instrument which is known as the signal conditioner. There is a conversion of signals that happened in this process. The signal conditioner converts the signal from one form such as electrical or mechanical to another form. The input signal is converted into the output signal in the signal conditioning process. Now the question may arise why do we need to convert the input signal into an output signal? The simple answer is that the signal needs to be amplified.

This amplification helps the signal to be converted into a compatible and easy-to-read form. This form of signal helps in data acquisition and machine control. Analog signals are converted into digital signals but before that, correct preparation is made. In the signal conditioning process, we manipulate a signal in a way that it can be converted and further proceed for the next step. Mechanical and environmental measurements are made in many electronic acquisitions for the measure. These measurements are done with the angle of specific sensors such as temperature and vibrations. But these sensors cannot work accurately for the measurement of the signals if the signal conditioning is not compelled yet.

Certain signals tend to have a very low voltage level. For these types of signals, amplification is required before they can be digitized properly. The best example of these signals is thermocouple signals. Some of the other sensors such as accelerometer, strain gauges, and resistance temperature detector cannot work until the excitation to operate is not completed. All these technologies are the best example of signal conditioning.

Because of its importance, we can say that signal conditional can be considered as the fundamental block of modern data acquisitions taken in consideration during the PCB design step. Physical measurement is the end goal of the data acquisition system. The following basic components are achieved by the signal conditioning process:

• Analog to digital convertor
• Sensor
• Signal conditioning
• Computer with DAQ

Use Of signal conditioning:

As discussed before, the basic task of signal conditioning is the conversion of the signal. The signals are converted from the input form to the output form. Most commonly, the input signals are of the electric type. Now why the conversion is required. This conversion is needed when the conventional signals cannot process the actual signal easily and it needs to be converted so that interpretation can be done correctly.

Frequency, electric charge, AC voltage, electric current, DC voltage, and current are basic signals that are accepted by the signal conditioning process.

A data acquisition system cannot work until it is connected to several signals and a wide variety of sensors. The arranged process is happened for the signal converting. The analog signal is taken by the signal conditioner for better manipulation. Once the signal is manipulated, it is then sent to the analog to digital converter system. The analog to the digital converted system is the end resource and it helps in digitizing the signal so it can be used in further processing. The basic purpose of the signal conditioning business is the conversion from analog to digital signals.

The digital domain is achieved by this process and this domain is then represented, displayed, stored, and analyzed. Input can be measured from a sensor that is used to measure strain, temperature, resistance, and acceleration. Moreover, the input can also be achieved by relays, switches, encoders, and clocks. A huge number of varieties can be interpreted from signal conditioners, this variety of signals include the output type.

There are some basic functionalities of the signal conditioning process. We will see the functionalities later. First, we need to understand the process of signal conditioning after the Printed Circuit board Fabrication is done.

Process of signal conditioning:

Following are the steps that are included in the signal conditioning process. The detail of every step is given for better understanding.

Step 1: Adjustment of a signal according to noise ratio:
The signal is adjusted to the noise ratio with the help of amplification and attenuation. In the electronic dictionary, you can say that amplification and attenuation are two opposite subjects. The deterioration of analog signals happens because of the background noise in the transmission process.

There comes the term signal-to-noise ratio. This means the signal strength ratio to unwanted background interference. This ratio is then increased with the help of amplification by magnifying the voltage level of the input signal. For example, in amplification, a signal of 0-1mv is converted into 0-10v.

On the other hand, in the attenuation process, the input amplitude is decreased. This process is done so that the signal can be fit in the optimal range of the device digitizer.

Step 2: removal of voltage signal for the prevention of equipment from damage:
The filtration and isolation of the input signal are required by the signal conditioning process. This is done because the unwanted background noise that is unwanted needs to be removed. Moreover, the removal of voltage signals that are far beyond the in-line digitizer is also compulsory.

There is a considerable difference in filtering and isolating processes. The filtering is done when noise needs to be rejected from a predefined frequency range. We can say that the isolation process is somehow similar. But the difference is a protection step of data acquisition and control system form the from voltage spikes is done. These voltage spikes can damage the entire data acquisition system.

Step 3: using controlled current or voltage for excitation technique:
Transducers and their subtypes require the excitation process. The operation of an active sensor is done with the help of the external sensor. A few types of signals that require external power to proceed further are strain gauges, accelerometers, transmitters, resistors, thermistors, and RTDs.

Step 4: signal linearization
Sometimes a signal cannot exhibit a linear relationship to the actual measurement. These types of signals can also be produced by some sensor equipment. To overcome this problem, we need a linearization process. As clear from the name linearization is done to optimize this signal according to the actual measurement.

The voltage of the input signal is mapped with the corresponding value requirement by physical measurement. Linearization is a very common signal connection process. The most important use of linearization is in industrial temperature measurement.

Now you have understood the process of signal conditioning in depth. Above mentioned steps need to be followed step by step for better signal conversion. Now it is necessary to understand the basic function of signal conditioning. How it is done and what are the benefits of signal conditioning.

Let’s understand the functionality and the benefits of this process now.

Functions of signal conditioners:

As we have discussed before, the main functions of signal conditioners are filtering, isolation and amplification. If these steps are not done correctly then inefficiencies and inaccuracy can happen. These can lead to incorrect output, loss of data, and other problems. So, the question arises how you can avoid these problems?

Now how would you know which type of signal conditioning is best for you? Well, the type of input signal you are going to use for processing will decide this. The other factors that make an impact on the type of signal conditioning process are desired type of output, available power for isolation in the quality criteria of the signal.

Now let’s understand the basic PC BOARD functions such as accuracy, flexibility, and the isolation required by signal conditioning.


Accuracy is the main thing to be noticed in the signal conditioning process. There is a broad variety of accuracy along with signal conditioning. There is a direct relation of accuracy between the conditioner and the accuracy of the other equipment. For example, the sensor that is used to provide the signal. An extremely accurate signal conditioner cannot perform well if the sensor is used in the process is not precise and working correctly. So, in a nutshell, you can say that to get the highly correct and efficient output, every degree of accuracy should be the same in the signal conditioner and other parts of the system. Otherwise, the device and cost would be wasted with a high level of precision.


As clear from the name flexibility in the signal conditioner means processing with a number of signals. A wider range of signal types can be processed with the flexibility feature. It is often considered as an additional advantage. Many designers and manufacturers add this feature to the product just to increase its functionality and efficiency.

Because if the device is dealing with a wide range of signals, it is likely to be more precise and calibrated for sensors. The replacement and change of other important parts of the system can be done with the help of flexibility. This will not affect the other part of the system.


Isolation is used in the signal conditioning process at more than one point. As a clear from the name, this process isolates the components and encourages that there is no interconnection between electric and other parts of the devices. The isolation process is required because it will enhance the common quality of the system. Moreover, the signal that needs to be isolated would also be decided according to configuration.
Should you have any further questions regarding the Signal Conditioning Process, feel free to contact us at sales@pnconline.com

PNC is providing a Turnkey solution to all your SMT assembly and bare board requirements across the United States.

Circuit Board Fabrication of Metal Core PCB’s

Circuit Board Fabrication of Metal Core PCB’s

The circuits boards composed of metallic cores is known as a metals PCB’s, and it is commonly utilized in LED devices. Metal Core PCB is harder to manufacture than FR-4 and can be more costly. Metal Core PCB (MCPCB) or Insulated Metal Substrate (IMS PCB) would be a technique created to address the FR4 substance’s thermodynamic constraints. If your boards must operate in a high-temperature condition, Metallic Core is a stronger option than FR4. Insulation Metal Substrate uses a unique insulator with a higher thermally conductance to offer electrically isolated among the copper and the metals cores.

Metal Core PCB Manufacturing is the process of designing and fabricating printed circuit boards (PCBs) with a metals core to be used with LED-based Solid States Illumination as well as other technologies that requires energy dispersion. Because adaptive elements could cause hotspots on an FR4 Printed Circuit Board, another type of cooling is required to ensure acceptable working conditions. Thermal vias underlying heat-generating elements (energy sources) can be used to transmit heat from the element (upper surface) to the base PCB layer, where it could be dissipated by a heat sink.

Manufacturing of Metal Core PCBs

Metal Core PCB Manufacturing offers a slew of advantages for a wide range of purposes. Because MCPCBs feature dielectric polymers layers as well as higher thermally conductance levels, they could attain a low heat resistance. Metal Core PCB Manufacture results in a solution that can transmit heat 9 times faster than a standard FR4 PCB. The laminates of MCPCBs disperse heat, ensuring that heat-generating aspects stay cooler. As a result, such elements have a longer working life and better efficiency.

The metal cores must first be drilled to enable layers transitions avoiding causing a short circuit in multilayered dielectric stacks. To begin, slightly larger holes are drilled into the metallic surface, which are then filled with insulation gel. The gel will be cured and solidified, allowing it to be plated with copper in the same way as a normal via can. The remainder of the stack is compressed and joined to the metallic surface, and then through-holes are machined in the stack up, which is then plated and cleaned.

Due to the existence of a metallic surface in the stack-up, metal-core PCBs should follow a specific method. If the circuit is a single-layer board with no layers transitioning back to a metal frame, the normal FR4 Circuit board fabrication procedure of pressing and bonding the insulating surface to the metal cores could be employed.

Purposes of Manufacturing of Metal Core PCBs

Metal Core PCB Manufacturing has a plethora of new uses as a result of the acceptance of new technology. This technique is effective for situations in which elements create a lot of heat and can’t be chilled utilizing traditional fans or other cooling techniques. MCPCBs are used in Solid States Lighting to assist achieve a higher level of luminosity with few LEDs.

Despite the numerous benefits of LED-based Solid State Lighting technology, they emit considerable quantities of heat. As a result, Metal Core PCB Manufacturing is beneficial for purposes such as:
● Automobiles Lights Fixtures in Basic
● Converters of energy (mechanical, telecom, energy accumulations, and great charge controls)
● Photovoltaic
● Security on the Street (brightness, streetlights, etc.)

Advantages of Metal Core Printed Circuits Boards

Metal cores PCBs have several capabilities over ordinary core components, including the capability to use a dielectric polymer with a high thermally conductance for decreased thermally impedance. A metal core PC Board can transport sound up to 9 times quicker than a normal FR4 lamination. The core materials used by MCPBC are great at dissipating heat and preserving essential heat-generating equipment cold, which can improve effectiveness, productivity, and lifespan. Benefits of Backlighting, the insulating impact of an iron core metal PCB, the brittle ceramic substance is replaced, suitable for putting on the wall, decreases labor and operational costs, and enhances product high thermal stability and structural qualities by replacing elements such as the heat sink all are the benefits of using Metal Core Printed Circuits Boards.

Whenever the energy from an LED was never adequately dissipated, problems happen; an LED’s lighting production is diminished, as well as degeneration when the heating stays stagnant in the LED packages. The goal of an MCPCB would be to effectively evacuate energy from across all current integrated circuits (not just LEDs). Among the ICs and the heating element, the aluminum bottom and thermal conducting insulating layers operate as bridging. Numerous heat sinks on top of surface-mounted equipment are eliminated since one singular heat sink was installed immediately to the metal foundation.

The fundamental feature of the materials is thermally expansions and contracting; nevertheless, various CTEs have varying thermal expansions. Aluminum and copper offer distinct advantages over standard FR4 in terms of thermal conductance, which can be as high as 0.83.0 W/c. The dimensions of a metal-based PCB are steadier than insulator substances in terms of directional durability. When aluminum PCB and aluminum sandwiches boards were heated from 30 °C to 140 °C, the size changed by 2.5 to 3.0%.

Thermal transmission is ten times faster than with a traditional stiff FR4 PCB. Heat dispersion is far preferable to that of ordinary FR4 structures. Increase power density could be achieved whereas equipment remains cool, extending element life and resilience. Dielectrics can be customized to meet your thermally and insulating needs. Systems with efficient cooling qualities can be driven harsher or de-rated for lower-cost materials.

It is possible to obtain the simplicity of both a heating sink and a PCB. That ensures you have not only the thermal properties of a heating element but also a PCB layout that is both cost-effective and small. This always allows for quick heat clearance from Led technology to avoid burns. By combining a dielectric polymeric covering with high thermal conductance levels, a decreased thermally resistivity could be achieved. The heat is dissipated by the laminates in the MCPCB, providing optimal heat managing and, as a result, longer operational life and improved productivity.

Metals PCB Layout and Variations

Aluminum cores PCBs, Copper cores PCBs, and Iron cores PCBs were the 3 types of metals PCBs now available on the marketplace, with Aluminium core PCBs being the most useful. The following is a common metal pcb fabrication.

1. Metallic Base

A metal-based PCB (MPCB) is made up of metallic substrates (such as aluminum, copper, or stainless), thermally conductive insulating, and copper circuits. MPCBs were employed in a wide range of industries because of their exceptional heat dispersion. They’re commonly found in power supplies, LED lights, and other places where heat is a significant problem.

2. Dielectric

The dielectric overlay is laminated along with a copper layer on the surfaces on an anodized, protected metals foundation. It is normally 50-200um thick and serves as an insulated covering. This could work as an insulating to avoid short-circuiting with the basis of the metal if it is too thick, and that will reduce heat dispersion. This could disperse heat efficiently if it is too thin, but it is simple to short-circuit.

3. Copper

To boost peeling resistance, the backside of the copper foil is chemically oxidized, and the surfaces were galvanized and brass plating. Copper was generally 0.5/1.0oz-in mass.

Why is it necessary to utilize a metals PCB?

Dissipation of Energy

Most double-sided and multi-layer PCBs were currently high-density, high-power boards with poor heat dissipation. Conventional platforms, including FR4 and CEM3, have poor heating conductivity because they are enclosed among levels, and heat could not be dispersed, resulting in a high-temperature breakdown of the components. Protected metals substances, which have a heat dispersion capability 5-10 times that of FR4, could address this issue.

Expansion Due to Heat

Resin, reinforcement materials (such as glass fiber), and copper foil make up traditional printable circuits boards. In the Z-axis dimension, the thermal expansion coefficient (CTE) of the substrates, whereas the CTE of copper, implying that the CTE of the metalized hole walls and the insulation ceiling of a typical Printed Circuit Board are vastly different. If the produced energy is not removed promptly, thermally expansions and contractions would shatter the metalized holes, resulting in faulty electronic devices.

That issue is exacerbated by SMT (Interface Mounting Technologies). Because the contact is made by solder directly across the metallic pads and the SMD, the CTE differential among the ceramics chips and the FR4 substrates was likely to induce connections fracturing over time. The metals PCB could efficiently control the thermal transfer issue, reducing thermal expansions and contracting and enhancing the electronics equipment’s lifetime and dependability.

Stabilization in Dimensions

In terms of dimensions, a metal PCB is far more dependable than a regular PCB. For instance, the dimension variation of an aluminum core metals PCB heated from 30°C to 140°C is 2.53%. High heat dissipating substances protect parts from overheating and damages, and a metals cores PCB or an aluminum cores PCB may be the best option because it effectively works as one giant heat sink.

Interested to know more about Metal Core PCB boards, or PC Board Assembly contact us at sales@pnconline.com.