Tag Archives: pcb assembly

printed circuit board

Differences Between IC and a PC Board

Before discussing the IC, you must know what PCB is. The PC Board or PCB has electronic components to help a device function. All digital and electronic devices have PCBs, like consumer products, smartphones, computers, laptops, tabs, etc. The purpose of the PCB is to eliminate assembly issues and have less wiring, enhancing automation and production.
The PCB has different types in terms of the number of layers. Like, it is either a single layer, double layer, four or six layers, or a multilayer circuit board. Now, we will discuss the difference between PCB and integrated circuits.

What Is IC Or Integrated Circuit Board?

The integration of chips makes an integrated circuit, like chips used in a CPU and motherboard are ICs or integrated circuits. Initially, IC was called an integrated block. You will see the IC soldered on a printed circuit board. In other words, a printed circuit board carries the integrated circuit.
The purpose of the integrated circuit or IC is to integrate an ordinary circuit into a chip. So, if the IC gets damaged, the chip won’t work. But, if the PCB gets damaged, you can replace the components.

Printed Circuit Board and Its Components

PCB has different types, however, today’s circuit board has specific components, such as:
Layout and Circuit: PCB circuit is a tool for conducting between different components. A copper surface becomes the base and power layer. Besides, it involves routing through drawing.
Dielectric Layer In The Board: it is also known as the substrate that contains insulation that lies between the layers and a circuit.
Through-Hole Via: vias are made for conducting and a through-hole via helps multiple layers conduct. The plug-in of a device is a large through-hole. There is also a non-through-hole that helps in surface mounting and fixes screws while PCB assembly.
Solder Mask: The copper surface is not always tinned. Epoxy resin is used to print the non-tinned area to separate the tinned copper to prevent a short circuit. Solder mask has different colors, including black, green, red blue, etc.
Silkscreen or Marking: Silkscreen is used to make legends or mark names and locations of different components. It helps maintain a PCB after assembly.
Finishing: the copper surface has to be tinned or it would get oxidized. The surface finish involves different processes, such as ENIG, HASL, immersion tin or silver, and OSP. You can use any method according to your needs as each finishing method has some pros and cons.

Features of Advanced PCB

High-Density PCB’s
PCB is becoming advanced due to new technology. You will see the HDI circuit boards in all small gadgets. Both installation and ICs are also improving with time.
More reliable
Now, PCB is more reliable than before because we have better testing tools. Moreover, its manufacturing and the end product are of high quality.
Up To Parameters
Each PCB material has certain mechanical, electrical, physical, and chemical properties. You will get a high-performing PCB if its design is according to the standards and design parameters.
Better PCB Production
PCB production has also increased with time due to better tools, design software, and advanced technology. Various standards ensure a high-quality device, such as automation, standardization, management, etc. You will see better equipment to test your PCB to have a high-quality end product.
PC Board Assembly
Assembly has also improved and helps you to have more production than the previous years. Similarly, you can develop complete equipment by assembling different components.
PCB Maintenance
PCB maintenance is also essential, especially, if the assembly gets issues. You can easily replace the damaged parts, restoring the system. Making lightweight, and mini or smart PCB is also easier than before. You can have a device with high-speed signals by maintaining your circuit board.

Features of Integrated Circuit

The integrated circuits were developed by Jack Kilby and Robert Noyce. The integrated circuit is very common in certain industries, such as military, civil electronics, television, communication, radio recorder, computer, etc. It provides the following benefits.

  • Lightweight structure
  • Less lead
  • Small volume
  • Solder joint
  • More reliability
  • Longer lifespan
  • High performance
  • Mass production
  • Low cost

IC is a microelectronic component or device in a PCB. IC technology involves the manufacturing of chips, design technology, processing technology, testing, packaging, design innovation, and mass production.
The integrated circuit is a key part of advanced electronic sand it is the heart of many circuits. You will see at least one chip or IC in every electronic device. IC is a combination of various electronic components, including capacitors, resistors, transistors, etc. These components together make a small chip and are linked to having a common goal. There are different types of ICs, such as

  • Single-circuit logic gates
  • Voltage regulators
  • Open amps
  • Motor controllers
  • 555 timers
  • Microprocessors
  • Microcontrollers
  • FPGAs
  • Many others

There is a complex process of making layers of copper, semiconductor wafers, and several other materials. These materials interconnect to make resistors, transistors, and other parts of a circuit.
Not only IC is too small, but it has very thin copper layers and semiconductor wafers. The layers have very delicate connections. Similarly, The IC die is a very small circuit that is too tiny to connect or solder, so you have to package the die that converts the delicate die into a black chip that you often see.
You can enhance the working life of equipment by using the IC to assemble different electronic tools. It helps you to increase the assembly density many times compared to transistors.
These days, you would see silicon ICs involving semiconductors. So, IC is a device that integrates capacitors, resistors, semiconductors, and other elements that make a circuit perform certain tasks. The device connects wires between these components on the silicon wafer through oxidation, diffusion, aluminum evaporation, epitaxy, and photolithography, and then it is welded in a casing or shell.

Differences Between IC and a PCBoard
Differences Between IC and a PCBoard

What Is IC Package?

IC package helps convert a die into a device to have a connection. Die’s outer connection has a small gold wire to a pad on the package that helps to connect it. The pad or pin is silver and it is an extruded terminal on the IC that continues to connect to a circuit’s outer parts. There are different types of IC packages having different dimensions, installation methods, and a number of pins.
Understanding Pin Numbering and Polarity Marking
You should know that every IC is polarized and each pin is different in its function and location. So, the package must show each pin’s nature and function. Mostly the ICs have DOT or Notch to differentiate the first pin. Like, sometimes only one pin is the first or sometimes both are.
Package Mounting
The mounting of a package on a PCB also varies, it can be SMT or surface mount, SMD, or a through-hole mounting. The through-hole package is often large and easy to manage, and it is created to get stuck through a board’s one side and soldering the other side.
The surface mount package has different sizes, small or minuscule. These packages are created to be soldered to the PCB surface and sit on one side. The SMD package has pins either perpendicular to the chip or extruded out the side, or set in a matrix on a chip’s lower part. Such ICs are hard to assemble with hands and need special tools for this purpose.
Dual In-Line Package or DIP
DIP is an ordinary through-hole IC package having two parallel lines of pins that extend perpendicularly from a black, and rectangular plastic casing.
SMT, SMD, or Surface Mount Package
There are many types of SMT packages and in the case of ICs, you must have a custom PCB having compatible copper patterns to be soldered. You need special automated tools to solder the SMD package.
SOP or Small Outline Package
The SOIC package is the SMT cousin of the DIP as this is what you see when you bend all the pins outward on a DIP, reducing the size. The SOP package is very easy to solder with hands. The spacing between the pins should be 1.27mm or 0.05”.
The shrink small-outline package or SSOP is a small type of SOIC package. Likewise, there are TSOP or thin-small outline packages and TSSOP or thin-shrink small-outline packages.
It is easy to understand the difference between IC and PCB if you know all their features as described above.

Final Thoughts

The integrated circuit is a key part of advanced electronics and it is the heart of many circuits. You will see at least one chip or IC in every electronic device. IC is a combination of various electronic components, including capacitors, resistors, transistors, etc.
The purpose of the integrated circuit or IC is to integrate an ordinary circuit into a chip. So, if the IC gets damaged, the chip won’t work. But, if the PCB gets damaged, you can replace the components. However, PCB and IC work together to help an electronic device function.
Would like to know more about the ICs, PCBs or pcb assembly? Email us at sales@pnconline.com

PCB Design

Understanding the PCB Design for Half Adder

Multiple circuits’ combination involves various logic gates to create a multiplexer, encoder, de-multiplexer, and decoder. Such circuits have certain qualities, such as the circuit’s output more depends on the levels which are present at the input terminal.
Such a circuit lacks memory, and the previous input can’t influence the current input. The combined circuits consist of inputs and outputs.
A half adder is an electronic circuit that adds two binary numbers. So, two single binary numbers act as adders in this case. It can return the carry and the output, and the representation in practice involves the XOR and AND logic gates. There are two inputs in a half adder circuit, including A and B, generating the Sum and Carry. So, the number of outputs is also two in this case, like S and C.

Types of Combinational Circuits

  • Half adder
  • Full adder
  • Encoder
  • Subtractor
  • Decoder
  • Multiplexer
  • De-multiplexer

Understanding The Half Adder

Half adder is a digital circuit in PCB that provides an addition to binary numbers. In a half adder, a number’s weight is based on the binary digits’ position. The binary numbers are only from 0 to 1 of which 1 acts as the largest number and 0 as a smaller digit.
The two inputs of the half adder generate two outputs, so it is the simplest electronic circuit in the PCB. The inputs A and B are the bits where addition is required, whereas the Sum and Carry are the outputs abbreviated as S and C.

Half Adder Explained

The half adder circuit has two gates, including XOR and AND, and both have the same inputs. However, each gate generates the output, like XOR generates the Sum and AND generates Carry.

Half Adder Facts

According to engineers’ calculations if both ‘A and B’ inputs are 0, then both outputs like S and C would be 0.
However, if any of the input is 1, then the S or sum will be 1, but the C or carry will be 0.
However, if both A and B inputs are 1, then the S or sum will be 0, and the C or carry will be 1.
The half adder in a PCB performs additions according to the inputs applied.

2-Bit Half Adder

You can have the following combinations, such as





In this equation, 1+1=10, but it should be 2-bit output if rewritten, such as





In this case, the normal output is the Sum, whereas you should consider Carry as a carry-out. It is easy to implement a 1-bit adder through an XOR gate.
If you want to add two 8-bit, you can do it through the full adder because the half adder is suitable for the addition of one binary digit.
For two-binary digits, you will have to reduce the truth table. But, for a three-binary digit adder, the process of addition through a half adder should be done twice. Likewise, a four-digit adder involves another repetition of the half adder addition.
The entire process shows that it is easy to implement, but it takes lots of time.

Half-Adder IC

You can implement the half adder by using the high-speed CMOS digital and logic-based Printed Circuit Board.

Understanding Equation

It is easy to identify the equation of the half adder PCBs through two concepts, such as the Sum of Products, SOP, and the Products of sum, POS. The Boolean system of such PCBs helps find the relations between the inputs applied and the generated outputs.
Designers draw the K maps to find the equation and the maps are based on the facts. The k map has two equations, as it has two logic gates.

The K map for the Carry brings the below facts.
Whereas the K map for the Sum or XOR brings
S= A⊕ B

Applications of A Half-Adder PCB

The basic half adder has several applications, such:

  • It offers additions on the binary bits, and the logic unit and arithmetic lying in the computer need a half-adder circuit.
  • The half adder circuits when combined can produce full-adder circuits.
  • Such logic of half-adder circuits helps in designing calculators. So, the PCB in a calculator prefers a half-adder circuit.
  • The half-adder circuit also helps calculate tables and addresses.
  • Other than additions, the half-adder circuits can also handle different digital circuits’ applications. So, you can consider it a vital part of digital electronics.

Implementing The Half Adder Through An NOR Gate: NOR is a universal gate that helps implement a half adder.

Implementing The Half Adder Through NAND Gate

The NAND is also a universal gate that shows that you can design any type of PC Board through NAND gates. In this type, the carry output is produced through one NAND gate’s output being applied to the input which is another NAND gate. The second NAND gate is AND-gate generated output.

The Sum’s output equation can be produced through the output of the initial NAND, but with A and B inputs. In the end, the outputs generated by the NAND gates are again tried on the gate, producing the Sum’s output.
Hence, the standard adder in a digital PCB is easy to design through different logic gates. However, the addition of multiple bits is hard and it becomes a half-adder’s limitation.

Understanding A Full Adder PCB

The full-adder circuit includes three inputs, such as A, B, and C which add three numbers for input, generating the Carry and Sum. Whereas the number of the outputs is two. The main reason for half and full adders is the addition.
If Carry is produced through a previous addition, you can add it to another, unlike a half adder.

Difference Between A Half And Full Adder

A full adder involves two AND gates, two OR, and two EX-OR gates. Full adder is applicable in digital processors, and additions of several bits.
You have to combine two logic gates for PCB design with a half adder. But, a full adder consists of three gates.
Half adder is required in the electronic devices to calculate additions. But, the full adder is applied to the digital processors to add a long bit.
You can have a high output in full adders. Moreover, they involve a high speed and are very powerful in supplying voltage.
Full adder is also suitable for GPU, or Graphics Processing Unit.
How Are Half Adder And Full Adder Similar?
Half adder and full adder have one thing in common and that is the addition, as both are combinational circuits and don’t need a memory, like sequential circuits.


What Is An Adder In PCB?

The digital circuits have different benefits, and if their main focus is to provide an additional, it is called Adder. It has two types, including the half adder and the full adder, depending on its inputs and output. However, the output is called Sum and Carry.
Adder is used in different kinds of processors other than just computers. They are constructed for several numerical elements, such as binary code decimal or excess-3.

Is There Any Limitation Of A Half Adder?

Yes, the half adder has some limitations. Like, it cannot add the carry bit produced from the previous or old bit. So, the half adders can’t perform additions in the case of multiple bits.

What Is A Full Adder In PCB?

A full adder includes three inputs, such as A, B, and C which add three numbers for input, generating the Carry and Sum. Whereas the number of the outputs is two.

Where To Use A Half-Adder Circuit?

PCB with a half adder is used in calculators and digital devices. It has a simple design and you can convert it to a half subtractor.

How Many Types Of Combinational Circuits Are There?

The types of combinational circuits include the half adder, full adder, encoder, subtractor, decoder, multiplexer, and de-multiplexer.

What Are The Uses Of A Half Adder?

A half adder offers additions on the binary bits, and the logic unit and arithmetic lying in the computer need a half-adder circuit. Moreover, half-adder circuits when combined can produce full-adder circuits. The logic in designing calculators. So, the PCB in a calculator prefers a half-adder circuit. The half-adder circuits can also handle different digital circuits’ applications.

Wrap Up

A half adder is an electronic circuit that adds two binary numbers. So, two single binary numbers act as adders in this case. It can return the carry and the output, and the representation in practice involves the XOR and AND logic gates. There are two inputs in a half adder circuit, including A and B, generating the Sum and Carry. So, the number of outputs is also two in this case, like S and C.
Would like to know more about pcb fabrication? Email us at sales@pnconline.com

Flexible Circuit PCB Assembly

Flexible Circuit PCB Assembly

It can be tricky to figure out what you need to know about flexible circuits assembly, especially since it’s not something many people are familiar with or have experience with. Flexible electronic assembly is one of the most innovative and useful circuit boards in the electronics world since it allows you to make low-profile electronic devices with multiple electronic components.
The Circuit board has different types, including a standard or rigid PCB, a flex PCB, and a flex-rigid PCB. Besides, these circuit boards are further divided into single-layer PCBs, double-layer PCBs, and multilayer PCBs.
A flexible circuit board has a flexible base, but the components are just like a rigid circuit board. However, you can turn a flex PCB into any shape while using it which means it is easy to bend.The following article will help you learn everything you need to know about flexible smt assembly so that you can get started working on your designs right away.
Before we move to the assembly of a flex PCB, we want to discuss its applications.

FPCB Applications

The FPCB is a vital part of electronic products that we use daily, such as desktop printers, hard disks, and several other devices. You would see the use of a flex circuit board in the below industries.

  • Medical industry
  • Consumer electronics
  • Communications industry
  • Military
  • Automotive industry
  • Aerospace industry
  • Transportation

Engineers use it in the transportation industry because flex PCBs are vibration-resistant and constant movement for several hours can’t damage them.

Choosing The Right Material And Processes

When it comes to choosing the right materials and processes for your flexible circuit board assembly, there are a few things you need to keep in mind.
First, consider the environment in which the board will be used. Will it be exposed to harsh chemicals or extreme temperatures?
Second, think about the amount of flexibility you need. The more flexible the circuit, the more expensive it will be. Finally, consider the size and weight of the finished product.

What Are The Uses Of The Flex PCBs?

Every kind of circuit board has specific uses because it is an important part of different products, especially electronics. Designers preferflexible circuit boards for computers, mobile phones, and servers to make them more effective, less heavy, and more flexible. Though different devices have different shapes, functions, and sizes, they all include flexible circuit boards.
Let’s look at the main uses of flexible Printed Circuit Board
1-FPCB is Flexible

  • The flex circuit board is an elastic board that helps in placing it near folds or edges.
  • It is suitable for 3-axis connections due to its elasticity.
  • FPCB involves minimum wiring, whereas some applications don’t require any wiring at all. So, there are no wiring issues that make a device more reliable.

2-Flex PCB Reduces Weight and Space
Unlike rigid circuit boards, a flex PCB needs less space. According to engineers, it can save 60 percent of space, hence, its weight also decreases.
3-Flex PCB Reduces Connectors
If you use a flex PCB in a 3D design, it will eliminate or reduce connectors. Whereas the bending cycles go up to 200 000.
4-FPCB Eliminates Vibration
A flex PCB is very light which helps it absorb movements or vibrations. So, the vibrations can’t damage an FPCB. Moreover, the solder joints also stay safe.
5-Compatible With Tough Environments
You can use a flex circuit board in tougher environments due to its material. Its main materials are water-resistant, shock-resistant, heat-resistant, as well as corrosion, and oil-proof.
6-Thin layers
Flex PCB has thin layers on the inside which reduce its weight. The copper layers in an FPCB are heavy which if combined with thin layers becomes useful for high-power applications.

Types of Flex Circuit Board

A flex PC Board has different types, including single-sided, double-sided, multilayer flex, and rigid-flex circuit boards. Let’s look at their pros one by one.
Single-sided F PCB: It is economical, flexible, and has many bending cycles.
Double-sided F PCB: Its design is more flexible than others. Moreover, it saves space and provides dual-sided soldering.
Multilayer F PCB: It is lightweight and compact and its flexibility is more in a 3D design. It is compatible with blind and buried vias.
Rigid-flex circuit board: It helps have a long-lasting 3D application having stable parts, pins, heat streaks, etc. It reduces noise and enhances signal integrity.Besides, it is more reliable and offers better impedance.
It helps have minimum mechanical space and reduces the weight of the device. It is compatible with the HDI micro-via. It is economical and offers a flexible pcb design.
Some More Advantages
A flex PCB can give you many benefits, but mainly it enhances flexibility and saves space. Its assembly involves a few items that reduce its cost and manufacturing time.

  • A flex circuit board offers a high-heat dissipation.
  • It enhances the inner airflow.
  • It reduces the size and weight of the package.
  • It involves minimum assembly errors.
  • It reduces the inductance of wires.
  • A flex circuit board enhances the product’s looks.
  • The assembly time and cost of the FPCB are less in some cases.
Flexible Circuit PCB Assembly
Flexible Circuit PCB Assembly

Flexible Printed Circuit Board Assembly

The assembly of a flex PCB is the same as a rigid board except for a few changes due to certain technical needs. The assembly of a single-layer flex PCB consists of the following steps

  • BOM
  • Electrical testing
  • Punching process
  • FPCB baking process
  • Optical inspection
  • FQC process
  • Silkscreen printing process
  • Reflow soldering
  • Packaging process
  • Mounting process
  • Deep inspection

Flex To Rigid Surface
Since flex PCB is soft and gets deformed, it is hard to assemble it directly on SMT. So, engineers fix it on a hard surface such as a tray for the assembly process. The tray or a hard carrier should be well-intact to make assembly smooth.
Low-Density Assembly
Flex PCBs aremore costly than the rigid circuit board, so most of them are used for connecting different modules having different functions. So, the FPCB assembly involves fewer components in the case of low-density assembly. The quantity of the components ranges from 2 to 50 in this case.
Increased Panels
Manufacturers use many planes during FPCB assembly to enhance the process. A flexible circuit board is used in smart products, such as digital cameras and mobile phones, so a single board is too small. As it involves a few components, manufacturers use panels which are then removed through punching.
Use of Auxiliary Fixtures
Flexible PCB assembly involves auxiliary fixtures as it deforms easily. These fixtures include:

  • Baking fixture
  • Carrying tray for FPCB
  • Electrical and function test fixtures
  • Cutting Fixtures

High Demand for Quality
The devices with FPCB are used in an environment where the accuracy of control has to be high. So, the board components should be well-positioned to get compatible with a particular environment.One must focus on certain factors, such as anti-static precautions, cleanliness, and reliable soldering. It also involves several technical issues.
Increased Assembly Cost
A flex circuit board has a costly assembly compared to a rigid circuit board. It involves many fixtures which also increases its cost.Theassembly process takes more time than a rigid PCB. Moreover, the assembly involves lots of accessories and working labor because less equipment is used. Besides, the increased demand for high quality and flawless manufacturing environment also is the reason for the high cost.
However, as the flex circuit board’s application is increasing, so new technology and assembly methods emerge. Eventually, the assembly cost decreases due to less time and tools involved.
Choosing A Supplier
When it comes to choosing a supplier for your flexible circuits PCB assembly, there are a few things you need to take into account. First, you need to make sure that the supplier is reputable and has a good track record.
Second, you need to make sure that they have the necessary experience and expertise.
Third, you should ensure that they are able to meet your specific needs and requirements.
Fourth, you should see if they are able to provide you with a competitive price. Finally, you need to ensure that they can produce high-quality products at an efficient rate.
For example, some of the key considerations when selecting a supplier are quality control measures in place and their ability to adapt to changes in demand. To put this another way, if a company’s success relies on being able to keep up with production rates, it will be easier for them to fulfill orders if they’re accustomed to adjusting according to supply and demand than if they’re not. The same thing goes for quality control, as companies without established procedures may not be as adept at preventing defective products from reaching customers.

Final Words

Flexible circuits are used in a variety of products, from hearing aids to sports-related items like fitness trackers and smartwatches. They allow you to connect electronics into your home, and even onto your body, giving you easy access to valuable data and features. However, with all this flexibility comes the need for greater care in assembly than typical PCBs require. The designer must know about flexible circuits and PCB assembly to ensure the end product works correctly and lasts as long as possible.
Would like to know more about Flexible Circuit assembly or pcb assembly services? Email us at sales@pnconline.com

Four Stages of PCB Design and Assembling

Four Stages of PCB Design and Assembling

PCB is a printed circuit board that helps connect different electrical components. The board is a combination of laminated material, and the copper foil laid on a non-conductive substrate.
A PCB is the main part of any electronic device, so it has to be perfect. It should have functional components and microelectronics circuits to perform well. Development of PCB goes through different processes that you should know well. PCB manufacturing has 4 stages, including design, manufacturing, PCB assembly, and PCB testing.

First Stage- Design

PCB design involves different steps, such as schematic design, layout planning, the placement of the components, routing, and manufacturing files.
PCB schematic design: It is a blueprint of PC design that shows all PCB components with symbols. The schematic design is always according to the technical requirements of the user.
Layout planning: After the schematic design, you have to develop the layout of a PCB that includes physical components’ models,the shape of the PCB, and the structure of a PCB.
Placement of components: It involves planning the placement of various components. You decide on the PCB layers according to your requirements. The right placement of the components ensures a flawless board, decreasing the production cost.
First of all, the designer places the fixed components in the layout, including switches and connectors.
Then, the critical components are placed, such as memory chips, microprocessors, as well as power supplies.
Then the supporting components of the PCB are placed, like inductors, capacitors, and resistors.
In the end, the decoupling capacitors and terminating resistors are placed.
Routing: Once the components are placed, you have to connect all components through trace routing. There are four ways to do so, such as manual routing, auto-interactive routing, semi-automatic, and batch-auto routing. You can choose any method according to your Printed Circuit Board and budget.
Design: In this stage, you have to plan for the number of board layers, dimension of the board, and types of components. You can use a special app in this case, such as EDA or electronic design automation. The designer often adopts the SMT instead of a through-hole technology, depending on your requirements.Once the design is over, you can export the design files to CAD or Gerber format.
Preparation of manufacturing files: This is the last stage of design where the designer exports the Gerber files for manufacturing. The manufacturer needs these files to develop a printed circuit board.

Four Stages of PCB Design and Assembling
Four Stages of PCB Design and Assembling

Stage 2-Manufacturing of Circuit Board

Once the manufacturer receives all design drawings, he starts making PCB. It involves different stages as described below:
Design Imaging:The manufacturer uses a plotter to convert the PCB design files into filmslike they resemble the photo negatives of the schematic design. The printer uses black and clear inks for inner and outer layers. Copper traces and circuits are shown with black ink, whereas the non-conductive parts are shown with clearink.
Printing of Inner Layers On Copper: It is the initial stage of PCB manufacturing. The engineer uses a substrate material to make a laminated board. Like, epoxy resin or fiberglass are common in this case. The design of the PCB is printed on the board, and then he pre-bondscopper on a board’s both sides. After that comes the etching of copper, and then the board is protected through a photo-sensitive film.
UltravioletLight: the manufacturer then exposes the resist-covered PCB to UV light to strengthen the photo-reactive material. Then the board is cleaned with an alkaline solution to get rid of unnecessary copper particles. The expert checks the board to remove any errors and then goes to the next stage. The main aim of UV blasting is to develop a PCB Board according to the schematic drawing.
Inner layer’s etching: copper’s inner layer needs chemical etching for removal. The process of photoresist prevents the essential copper from etching. The board size determines the amount of the solution and etching time which is less for small boards but more for large boards.
Some other manufacturing processes include:

  • Alignment of layers
  • Optical testing
  • Layer pressing and lamination
  • Drilling
  • Plating of PCB
  • Imaging of external layer
  • Etching of external layer
  • Solder mask
  • Silk screening
  • PCB finishing
  • Testing
  • Profiling
  • Quality testing
  • Packaging of PCB
  • Shipping of PCB

Stage 3-PCB Assembly

The assembly of a PCB involves four stages, such as soldering, placement of components, solder pasting, and testing. Let’s review them in detail.
Solder Pasting: It is like t-shirt screening, as it involves solder paste stenciling. The stencil is made of stainless steel and it’s very thin. You have to use the stencil to apply the paste in areas where different components will be installed. In this process, flux is used for melting the paste to help it bond to the PCB.
Placementofthe Components: Once you are done with the solder paste, you need a pick and place the tool for the components. Generally, it is SMT or surface mount technology where components are placed on the PCB surface. Initially, it used to be a manual process and assemblers used tweezers to pick and place different components on the board. However, new technology has made this process automated due to robotics and it’s more precise and consistent.
Soldering of PCB: After the placement of components, you have to place the PCB on a conveyor belt to help a board move to a reflow oven that heats the board. The heating helps melt the solder paste, and bond the components on the board permanently. However, if the board has more components other than SMDs, it would need a through-hole insertion that involves more advanced soldering.
Testing of PCB Quality: Sometimes, the components are misplaced during reflow when the PCB is moving. This issue may cause a poor connection, or no connection at all, or the parts are not well-connected. So, you need to inspect the PCB to ensure a flawless function. A PCB can fail this test even if it passed other tests, and a failed PCB goes to scrap or you have to recycle it with all essential processes until you get a flawless circuit board.

Stage4-PCB Testing

Manufacturers use different methods for PCB testing to ensure that it will function correctly. These methods include in-circuit, optical inspection, flying probe, turn-in, x-ray, anda functional test.
In-Circuit: It is also known as ICT, or you can call it the bed-of-nails inspection. In this method, PCB is pressed on the bed of probes. It is highly accurate because it checks all components of a PCB. You can also test the BGAs with this method. Moreover, it also tests the solder integrity of the bottom-terminated components.
However, this test is expensive and time-consuming. Moreover, it does not test the non-electrical parts and connectors.
AOI, Automated Optical Inspection: This testing method involves a visual inspection of the board. It is done with the help of HD cameras, LED lights, UV, and high-level infrared. The test is contact-free and helps check poor solder joints or missing parts. It also tests the smt assembly issues and it’s very accurate.
However, it only inspects the preprogrammed errors and can’t check defects regarding glue or sealing.
Flying Probe Test: It involves probes that help test the upper and lower surface of a PCB. This PCB testing method is cost-effective, consumes less time, is easy to do, and is compatible with many applications of PCB assembly. However, it is slower than other testing methods and not ideal for complex testing.
Burn-In Test: In this test, PCB is exposed to a high temperature to see if it works well. It ensures a lifetime product and enhances the brand because of an effective end product.
However, this test is costly and can affect a PCB by damaging its components. Moreover, it can be less reliable due to voltage scaling.
Inspecting Through X-Ray: It involves an x-ray machine that inspects a PCB. It thoroughly checks soldering which is hard to detect with AOI. The x-ray inspection is ideal for thick or multilayered PCBs. It also detects the voids or bubbles and can also check the components under a shield.
However, it needs expensive x-ray machinesand can cause hazards in the workplace.
Functional Test of PCB: It involves functional testers that you connect to the edge connector. It creates an electronic environment for which a PCB is made. It inspects the functional errors and identifies the analog issues. It also checks issues with digital circuitry.
However, it is very costly and needs high-end tools, which are too expensive. It needs a proper understanding of the working atmosphere of the DUT.

Final Thoughts

The development of a PCB involves different processes, including design, printing, assembling, and testing. Each stage is further divided into different parts, and you have to understand all stages to create a flawless PCB.
The board is a combination of laminated material, and the copper foil laid on a non-conductive substrate. A PCB is the main part of any electronic device, so it has to be perfect.
Would like to know more about the design or pcb assembly services stages? Email us at sales@pnconline.com

Physical and Electrical Partitioning In PCB Design

Physical and Electrical Partitioning In PCB Design

Partitioning your design into physical and electrical sections can significantly reduce the number of through-holes you need in your PCB, thereby increasing production speed and cutting down on manufacturing costs. Here, we will explain what physical and electrical partitioning are how they are used in PCB design, and how to create effective partitioning schemes in your PCB designs.
As you work on your next PCB design, you may be wondering how to implement physical and electrical partitioning in your design. These two factors are equally important to making the finished product successful, and both have a huge impact on the success of your design project as a whole. Stay with us if you’re looking to save time and money while producing high-quality products, read on!

Layout Considerations

When you’re laying out a Printed Circuit Board, you have two different considerations, such as physical, which is how your components are laid out on your printed circuit board; and electrical, which has to do with where you’re going to put all of your wires. These two can be grouped when it comes time for assembly.
For example, if you plan to use surface-mount parts that require soldering instead of wire-wrapping, then you will want to make sure that there is enough space between these parts so that they can be easily soldered onto your PCB. If you don’t leave enough space between them, then there won’t be room for solder paste. The solder paste is a sticky substance used to hold down SMT parts during pcb assembly.
This makes soldering difficult or impossible and the same logic applies to wiring. If you don’t leave enough space between components, then your wires may not fit without being bent too much or getting in each other’s way. This can cause problems when it comes time to solder everything together, as well as with heat dissipation, and too many wires crammed into one area might block airflow and cause overheating issues.
On top of that, you also need to consider things like trace width and spacing. Trace width refers to how wide your traces are (the lines connecting individual pads on your PCB), while trace spacing refers to how far apart they are from each other. Trace width should always be smaller than trace spacing because having wider traces means more copper is needed per unit length which means higher cost and greater weight.
Traces are usually made using either a single solid line or multiple lines connected by vias. Single solid lines tend to be faster but less reliable than multiple lines connected by vias, but they’re also easier to design and cheaper. Vias are holes drilled through layers of material that allow traces on different layers to connect.However, vias increase complexity and cost. There are several tools available to help designers create their circuits. Some free software options include EagleCAD, Kicad, Altium Designer, and CAD. However, regardless of what software you choose to use, remember that layout is only half of the process.

Physical and Electrical Partitioning In PCB Design-Content Image
Physical and Electrical Partitioning In PCB Design-Content Image

Overlapping Impedance Nets & Ghost Nets

To create a circuit board with electrical & physical separation, you must insert impedance nets into your design. There are three different ways you can do that, including overlapping impedances, creating ghosts, or through a virtual ground plane. In some designs, more than one method is used. So, let’s see how and when to use them.

An overlapping impedance net has part of it on one side of a barrier, and part of it on another side. A ghost net is used when you have two nets that need to be separated but you don’t want them physically separated because they are too close together or because they are too important for each other. A ghost net is just a virtual representation of an actual physical connection that exists between two parts of your circuit board.

A good example of why you might use a ghost PC board net instead of separating your nets with some physical method is if you have 2 power supplies that need to share ground. They can share ground by having their grounds tied together through some kind of wire.But, since they’re both supplying power independently, we don’t want them tied directly together at all times, but only when there is a current going through either one or both supplies. So what do we do? We create a ghost ground plane where we tie their grounds together. This way, when none ofthe supplies is active, there’s no connection between them, and when either supply is active, there isa connection between them.

An electrical partitioning net does exactly what it sounds like. It partitions electrical signals from each other. In a design where you want to physically separate your nets, you can do that by creating an impedance plane that separates them. But, then how do you keep them electrically isolated? That’s where a physical partitioning plane comes into play. This is just another name for a ghost ground plane, but instead of being used for sharing grounds between two supplies, it’s used for keeping two parts of your circuit board electrically isolated from each other while still allowing communication between them.

One last thing about these three methods is thatyou can’t use one without using at least one of the others. If you have a wall between two sections of your circuit board, there has to be some way for those sections to talk to each other. Otherwise, they wouldn’t be able to pass power or data. So, if you have a wall, you need ghosts or an impedance plane on both sides of it. And if you have ghosts, there needs to be a wall somewhere too.

Why Would You Ever Choose One Method Over Another?

Well, overlapping impedances are good when you don’t need high-frequency performance because they introduce more inductance than either of the other two methods. Ghosts are good when you don’t care as much about electromagnetic interference or EMI because they don’t create as much capacitance as either of the other two methods.

Whereas the physical partitioning nets are good when you want to keep your layout compact or if you have a design that’s already laid out and you can’t change it, as having a wall between two sections of your board is going to require some rework if it doesn’t already exist.
So, you need to decide if you want your partitions at a high frequency or low frequency. For a high-frequency circuit board, you’ll need to use overlapping impedances or ghosts; for a low-frequency circuit board, you can just go with physical partitioning nets.

Solving Unplanned Overlaps

It’s not uncommon for two different circuit boards or two different designs within a single board to overlap. Unplanned overlaps are hard to solve, but these tips will help you create better schematics so that you can avoid them.
Before you design your next PCB, make sure you follow all of these guidelines for PC Board Fabrication. By doing so, you’ll be able to identify overlaps before they occur and reduce your chances of creating any issues when manufacturing your product.
If you don’t have access to specialized tools or software, consider using some online tools like Google Sketch Up to help with your schematic design. These free programs allow you to build 3D models of your circuits, as well as export them into other applications like Eagle CAD or Altium Designer. This allows you to easily view how your components will fit together on a printed circuit board.
You should also use both software and hardware layout techniques to ensure that there aren’t any unplanned overlaps between your PCBs. While it may seem easier to just use one method, it’s important to understand how each technique works so that you can spot potential problems early on. For example, if you only use software-based layout techniques, then you might miss physical overlaps that would prevent a component from fitting onto your board.
Similarly, if you only rely on hardware-based methods, then you might overlook electrical conflicts that could lead to shorts or failures during testing. The best way to get around these kinds of issues is by using both types of layouts simultaneously. You can use a program like Altium Designer to lay out your circuit board, then print out an image of what you’ve created. Then take that printed image and place it over your actual PCB. This ensures that you catch any unplanned overlaps before they cause problems later on down the line.
Just remember, even though it takes more time upfront, double-checking everything twice is always worth it. With that said, there are still times when the overlap errors do slip through. When you find yourself in a situation where you need to resolve an issue like this, we recommend you double-check it. As it would become much easier to fix an error than it would be otherwise. You can also get professional help in this regard.
Would like to know more about physical and electrical partitioning in your designs or pcb assembly services? Write us at sales@pnconline.com